Creativity Through The Lens of Evolutionary Biology

Understanding how we, as humans, think and behave has always held fascination for scientists. Creativity – the ability to think of novel and useful ideas – is often considered a key trait that has allowed us to flourish as a species. Evolutionary biology dictates that traits beneficial to the species as a whole survive in the long term, while the less useful traits die down. 

So, in what ways is creativity beneficial to us?

Research of innovation in other birds and animals provides clues that creativity evolved when brains developed more to provide distinct survival advantages. 

One example found in nature is the bowerbird, one of nature’s creative engineers. Bowerbirds, found natively in Australia and New Guinea, have an interesting courtship and mating ritual. The male bowerbirds build elaborate structures called bowers from sticks and vegetation, and then decorate them with brightly colored objects like shells, stones, flowers or berries. 

When scientists looked at the complexity of the bower, which indicates higher intelligence and creativity, and the brain size they found an interesting correlation. Bowerbird species that built more complex bowers also had a larger cerebellum volume. 

Similar research on birds and primates confirm the hypothesis that more advanced brain structures developed to allow more complex cognition, which conferred evolutionary advantages. In a metastudy of birds and primates, researchers developed an innovation index by coding documented innovative behaviors and found that higher innovation levels correlated with larger brain sizes. 

Two main aspects of cognition that have to work together to support adaptability are innovation and social learning. 

Innovation

The ability to innovate plays a crucial role for a species in its survival. When faced with a new environment, species that are able to discover new food sources, avoid new predators or adapt to a different weather have significant advantages over those that don’t. One example of innovation in adapting to new foods comes from black rats that occupied the Jerusalem pine forests. The only source of food appropriate for the black rats in that area are pine seeds. The rats developed a technique to strip the pine cone to reach the seed, a behavior they had not previously used, which was critical for them to survive in the new habitat.  

Social Learning

While discovering a new food source or developing a new tool to extract hard to reach foods can help an animal survive a new environment, the species as a whole can only benefit when animals can learn from each other. Using the earlier example of black rats, scientists found that black rat pups were able to learn the new pine stripping behavior from their mothers, while other adults were not always successful in learning through observation. This successful transmission of learning from mothers to their pups allowed the black rats to flourish in the new environment. 

Our own history offers numerous examples of successful innovations that were exchanged and adopted by others. Our ability to think creatively and learn from others have allowed us to thrive in new environments. As one of the research studies summarized, “The combination of innovation with social learning, as documented in a number of primate species, is likely to be especially advantageous for species in novel habitats, as it could allow copying exploratory behavior per se as well as permitting the rapid transmission of successful strategies.”

How Imagination Builds Creativity and Social Emotional Skills

Nikola Tesla is one of the most fascinating inventors and futurists in recent history. His numerous accomplishments include the AC induction motor, Tesla coil and radio communication. His method for creating and inventing was not conventional – he relied heavily on imagination and visualized his ideas in great detail before taking any action on them. He describes his thought process as: 

“I do not rush into actual work. When I get an idea I start at once building it up in my imagination. I change the construction, make improvements and operate the device in my mind. It is absolutely immaterial to me whether I run my turbine in thought or test it in my shop. I even note if it is out of balance. There is no difference whatever, the results are the same. In this way I am able to rapidly develop and perfect a conception without touching anything.”

Imagination is the ability to form internal images of objects or situations that are not present to the senses. It is often the first step for a creative endeavor, and often provides the initial insights that lead to a novel solution. Tesla’s ability to visualize and imagine complete devices was extraordinary and allowed him to save immense amounts of time typically spent in prototyping. This approach to imagining problems and possible solutions has been common to many creative endeavors and scientists like Einstein, Feynman and many others have described their own imaginative experiences that led to scientific breakthroughs. 

There are other aspects of imagination that go beyond conceiving a single creative idea to building a more holistic creative mindset for an individual. 

From the earliest ages, children engage in pretend play with each other and with their toys. They imagine themselves in new roles and new situations, which helps them build crucial social and problem solving skills. 

When older students can imagine a future self that is more successful than their current selves, they are more likely to regulate their current behavior and show more persistence. They are more likely to participate in class discussions, spend more time in homework and achieve better grades. 

Imagination’s benefits go beyond personal goals to more broader social contexts. Similar to pretend play, when students are able to imagine others’ perspectives and their feelings, they are more effectively able to build consensus and navigate tricky social situations. 

Despite the advantages of nurturing imagination and creativity, our educational system currently doesn’t prioritize building these skills adequately. As researchers in imagination point out, “…supporting youths’ capacities for social-emotional imagination – their abilities to creatively conjure alternative perspectives, emotional feelings, courses of action, and outcomes for oneself and others in the short- and long-term future – is a critical missing piece in many classrooms.

While imagination is often considered a “soft-skill” and therefore less important than critical thinking, it is really a cognitive skill that schools should encourage in students. Imagination helps not just in creative problem solving, it also helps build important social and emotional skills that are essential for success in the real world. 

The Creative Aspect of Autism Spectrum Conditions

A few years ago, a research study to understand the impact of autism conditions on creativity found an unexpected result. Researchers found that while people on the autism spectrum come up with fewer responses to divergent thinking problems (e.g. different ways to use a paper clip), the responses are more original than the neurotypical population. 

The most common advice given for productive brainstorming —  to come up with lots of ideas which increases the chance of coming up with original ideas — doesn’t seem very relevant for this group. It appears that some of the characteristics of the autism conditions confer an advantage when it comes to creative thinking. As the researchers found, “…when fluency was statistically controlled for, people with high levels of autistic traits were more likely to produce unusual novel responses. This would be a potential cognitive advantage for creative problem solving.”

So why does this happen? 

One possible explanation lies in how we store and process information. Our brain is an associative engine, where all the concepts we know are stored as nodes interconnected through links. These links can be of different types and strengths. When we think of one idea, the next thought most likely to pop into our head is the idea that has the strongest connection to the first idea. For example, someone allergic to strawberries might have a strong ‘cause-effect’ link between “strawberry” and “rash”. Everytime they hear the word “strawberry” they might immediately think of a rash.

For most people, thinking of a concept leads to hopping from one node to the next strongest connected node in one train of thought. This phenomenon, also called falling into an ‘associative-rut’, is what leads to the initial set of fast, not-so-original ideas during brainstorming.

However, for those with autism spectrum conditions (ASC) it is possible that there isn’t one strong associative path to go down, and instead other paths are equally visible. In proposing the hyper-systemizing theory of autism, researchers noted that what appears as slow processing to an outsider might be due to the massive amounts of information being processed. An interviewee with Asperger’s syndrome explained his thinking as: 

“I see all information in terms of links. All information has a link to something and I pay attention to these links. If I am asked a question in an exam I have great difficulty in completing my answer within the allocated 45 min for that essay, because every fact I include has thousands of links to other facts, and I feel my answer would be incorrect if I didn’t report all of the linked facts. The examiner thinks he or she has set a nice circumscribed question to answer, but for someone with autism or Asperger’s syndrome, no topic is circumscribed. There is ever more detail with ever more interesting links between the details.”

The above description also provides a clue on why people with ASC come up with fewer but more original ideas. They ‘see’ more information which increases processing speed, but at the same time this ability makes it easier to avoid going down the routine path. 

In a similar vein, a study on verbal creativity found that people ASC generate more creative metaphors compared to neurotypical populations (e.g. “Feeling worthless is like offering a salad to South Americans”), while comprehension of conventional metaphors was similar between the two groups. The authors conclude, “Our results suggest that adults with ASD can create unique verbal associations that are not restricted to previous knowledge, thus pointing to unique verbal creativity in ASD.” 

ASC needs to be viewed more as a cognitive style, as opposed to a deficit. These differences in how information is processed has demonstrated several advantages, including superior ability in certain aspects of creative thinking. 

Building the 4Cs During Remote Learning

The rising infection rates in the current pandemic is forcing many school districts across the nation to start with a remote learning model in Fall. For teachers who had primarily taught in person earlier, structuring their learning to fit the new model can seem like an intimidating task. 

Beyond the challenges of understanding how to use technology tools effectively for instruction, there is an additional risk. 21st century skills like creativity, critical thinking or collaboration, might not get enough attention which will impact students’ overall development. These skills aren’t built in isolation. Instead, students develop these skills while interacting with their peers and teachers. 

So, how do we ensure that students continue to build these crucial skills when learning occurs in a remote fashion?

Community of Inquiry

Effective remote learning requires the development of healthy communities as outlined in the community of inquiry framework. Three essential elements – teaching presence, social presence and cognitive presence – interact dynamically in the learning process.

Cognitive presence is the extent to which learners are able to construct meaning through reflection or dialog. Social presence is the ability of participants to bring their unique personalities to the community so others view them as “real people.” Social presence directly impacts social emotional learning (SEL) and indirectly supports cognitive presence when learners discuss ideas with each other. Teacher presence has two important roles – to design the content and activities for learners, and to facilitate the social and cognitive presence to achieve learning goals. 

The framework also applies to 21st century skills and the figure below shows how the 4Cs map to the framework. 

Communication and Collaboration

The first step in designing an effective remote learning experience is to set the right climate by focusing on healthy communication and collaboration. A good climate powers the social and cognitive presence and improves learning outcomes. Here are some tips to improve communication and collaboration among students: 

  • In a remote setting, students don’t get an opportunity to get to know their peers in an organic fashion. This is especially true for students new to the class or school. Consider incorporating opportunities where students share about themselves – their hobbies, likes/dislikes etc. You can also create time for students to simply chat with each other for a few minutes at the beginning or end of your remote session. 
  • Have students come up with rules of engagement for group discussions. These rules can include ensuring everyone takes turns, assigning roles, and critiquing ideas respectfully. Assigning one person to monitor the discussion and explicitly call on people who haven’t had a chance to speak is another way to ensure all voices are included. 
  • Collaboration can also be enhanced by using technology effectively. We found high engagement when students were collaboratively editing a document while being able to talk to each other through video conferencing. Students who were shy in group conversations were able to offer more ideas by simply editing the document, and more ideas got incorporated as a result. 

Creative and Critical Thinking

Creativity and critical thinking can be weaved into both discourse and content. Here are some tips to incorporate these skills into learning:

  • Open-ended projects, that are both minds-on and hands-on, provide an opportunity for students to build creative and critical thinking. A well designed project includes opportunities for students to explore ideas, exercise different cognitive thinking patterns like associative or analogical thinking, self-evaluate ideas and solutions, and iterate if necessary. Projects that use simple materials can easily be implemented in a remote setting. 
  • When students reflect on the topic before having group discussions, the outcome is better. For brainstorming ideas, the quality and originality of ideas is higher when students first think of ideas on their own before bringing them to the group. The creativity of ideas is further enhanced when students try to build on each other’s ideas (using improv’s “Yes, and” approach). Similarly, when students first research a discussion topic on their own, they are able to bring more facts into the group discussion and improve critical thinking outcomes. 

In-person instruction is effective as the core element of social presence occurs naturally. However, intentionally incorporating social aspects that build a healthy community and promote meaningful dialog can make remote learning equally powerful. 


The original and longer version of this article was first published on edCircuit

What should learning look like when schools reopen?

Over the last few months schools and teachers have had to drastically change teaching and adapt in real time to school closures. As summer approaches and schools start planning for the next year, they are yet again faced with the possibility of full or partial closures. However, the pandemic is also giving us an opportunity to try different models of learning that can be beneficial even in the long-term. 

Covid-related school closures have created a situation where in-person interaction has become a precious resource. Maintaining adequate physical distance, temperature screenings, and frequent deep cleanings are all adding a significant expense to normal day-to-day interactions that we had come to take for granted. We now need to treat classroom time as a precious resource―by conserving it and using it mindfully where it’s most effective. For example, a teacher giving a lecture to a classful of students is not a good use of classroom time as students could do that just as well remotely. 

The most effective way to structure learning would be to prioritize classroom time for building skills that require interaction and can’t be developed in isolation, while leaving individual work for offline.

Skills that need active interaction time with peers and teachers primarily fall under the 21st century skills umbrella – skills like creativity, critical thinking or collaboration. So it makes sense to “flip” learning along the boundary of 21st century skills and academic content. Here are some activities that would benefit most from in-person time, where the teacher plays the role of a coach or facilitator in helping students develop critical skills. 

Creativity and Collaboration

A key thinking pattern that underlies creativity is associative thinking―the ability to combine different ideas into something meaningful. When students discuss and build on each other’s ideas toward a common solution, they are exercising their associative thinking. The same skills also build healthy collaboration – instead of students trying to compete with each other to make their idea “win”, they try to include everyone’s ideas as best as they can. Teachers can help build these skills by observing how students interact with their group members, and guiding them to include all voices and focus on joint problem solving. 

Critical Thinking

Critical thinking is when an individual improves the quality of their thinking by applying intellectual standards. It includes underlying skills like reasoning, evaluating, analyzing, judging, inferencing and reflecting. 

Socratic questioning and classroom discussions are a good way to discuss open-ended issues and build critical thinking. Critical thinking can be done both online or face-to-face, but there are differences. In online discussions students tend to use more evidence based reasoning as they can research before making their argument, while in face-to-face mode students listen to other ideas more and expand on them due to the spontaneous nature of the discussion. A blended model that capitalizes on the advantages of both models, can be a useful way to build critical thinking.  

Project Based Learning

Project based learning provides an avenue for students to be engaged in active, real-world problem solving. For students to gain most from PBL, they have to encounter and struggle with key concepts and skills behind the project. They build their thinking and knowledge in an experiential manner as they actively problem solve, by themselves or within a group.

The pandemic is causing significant disruption to the learning process and will require restructuring of lesson plans to address additional closures. Prioritizing 21st century skills for in-person classroom time can help stimulate students to think, engage in discussions, stay connected with their peers and learn from them. 

The full version of this article appeared on edCircuit

3 indoor activities to build creativity

With current school closures and approaching summer holidays, most parents are worried about the impact of extended breaks on learning for their children. While most of us associate academic work with learning, there are many different ways for children to learn and build crucial skills during these times. Students learn as much, if not more, from play and social interactions than with pure academic work. 

Here are three different ways to stretch your child’s thinking and build cognitive skills like creativity and critical thinking, in a much more stress free way.

Reframe challenges as opportunities

One powerful way to build an innovation mindset is to reframe problems as opportunities that are just waiting for a creative solution. The easiest way to find problems is with day to day activities and chores that children engage in. 

Ask your child what activities and chores they find inconvenient and how can they improve that experience. When posed as a challenge, children can come up with clever ideas. One of our students, who found cleaning his pets’ cages gross, came up with a clever idea of a new kind of trash bag with drawstrings all around that can be used to line the cage. When you need to clean the cage, you just have to pull the drawstring and all the mess gets caught in the bag.  Another student came up with the idea of a remote controlled mechanism to take out regular trash so you don’t have to carry a stinky bag for a long time. 

While not all ideas will be immediately helpful, it helps children to start thinking of problems as opportunities that they can find clever solutions to.   

Join the imaginary play

Young children can spend, what often feels like, an inordinate amount of time in imaginary pretend play. However, pretend play is also a child’s cognitive playground – where they can freely practice how to think and problem solve in different situations – and in the process build a deeper understanding of the world around them. 

In more elaborate forms, pretend play can grow into fantasy worlds or paracosms, where a child constructs an entire imaginary world with its own rules and systems. Michele Root-Bernstein, Professor and creativity scholar, found that engaging in building fantasy worlds as a child was indicative of creative accomplishments in adulthood. Highly renowned people across different disciplines like the Bronte siblings, Nietszche and Mozart invented imaginary worlds, as did a large number of MacArthur genius award recipients. She believes that the creativity involved in building fantasy worlds, equips children with skills like imagining, empathizing, modeling, problem solving and rule-breaking that are essential for any creative work. 

Pretend play and paracosms also provide an opportunity for parents and other family members to help stretch their child’s thinking. You can join your child in their fantasy world and co-create situations that need to be addressed or problems that need to be solved. In doing so, you give them a safe space to experiment with ideas while building a deeper understanding of society. 

Add counterfactual thinking to reading time

The benefits of reading books with your child, from cognitive to social emotional are well known. In a study designed to understand the effect of reading in toddlers, children were assigned to an intervention group or a control group. The intervention group received age appropriate books and additional reading time compared to the control group. The results of the study showed that families in the intervention group that did shared reading with their toddler groups, and not just reading aloud, showed significantly larger vocabulary scores compared to the control group. 

Parents can give an additional boost to shared book reading times by adding counterfactual thinking, which builds both creative and critical thinking. Save some time after reading a book together to discuss the book and pose additional questions. You can create different counterfactual questions by modifying or adding an event in the story or by changing characters and settings. For example, what would have happened if Dumbledore never gave Harry Potter the cloak of invisibility, or what would the story of Snow White look like in modern times? Sharing your ideas to the same prompts after your child shares theirs can help improve their ability to think in more diverse ways.  

The original version of this article appeared on edCircuit

We’ve partnered with Belouga to grow creativity globally!

Our popular How To Be An Inventor course has been selected to join Belouga’s collection of educational resources and is now available to educators and students around the world through this global learning platform. Belouga provides students and teachers with meaningful learning experiences, sourced from the most reputable learning organizations across the world. Belouga’s mission to build community and foster curiosity makes them a perfect partner to build an innovative mindset in students all over the world.  

Technological advances like AI are making routine jobs redundant and radically changing the nature of our workforce. Jobs that require creative problem solving are growing, while predictable jobs decline sharply. It’s not surprising that LinkedIn’s data shows that creativity is the top most skill employers look for. Now more than ever our educational system needs to adapt in ways that foster creativity instead of stifling it. Mihaly Csikszentmihalyi, noted psychologist and expert on creativity, puts it succinctly, “In the Renaissance creativity might have been a luxury for the few, but by now it is a necessity for all.

Our approach, reflected in our How To Be An Inventor course, is to build underlying thought patterns, like associative or reverse thinking, that lead to creative ideas. The course takes a hands-on, minds-on approach to learning and engages students to think both creatively and critically. Over the last few years, we have run different versions of the course and have had several of our students win national level awards for their ideas! Needless to say, we are excited that students and educators all over the world can now access the course through Belouga and build critical 21st century skills.  

The course is available on Belouga as a five-part series to fit within the platform’s collaborative online learning environment. It provides more than two and a half hours of content to increase creativity and innovation for students globally. 

About Belouga

Belouga was founded in 2017 with the mission of making education impactful and accessible on a global scale through peer-to-peer and classroom connection, communication, and collaboration. Realizing the rapidly changing landscape of technology and education, the Belouga team looked to create a central location, which takes the heavy lifting out of global education, and provides teachers and students with a personalized learning experience through community and content without sacrificing creativity or curriculum needs. Learn more at https://belouga.org/ 

See the full press release here

How Play Helps Creativity and Learning

Some of the most groundbreaking innovations didn’t get their start from a serious effort to solve a problem but from much more frivolous, playful ideas. After the first music boxes were invented, people got interested in making programmable music boxes that could play different music when the cylinder was replaced. But this basic idea – that the behaviour of a machine could be changed – became the catalyst for more serious inventions like the programmable Jacquard loom and the general purpose computer. 

Most people tend to dismiss play as childish and silly. However, a playful approach to problem solving can bring out fresh, creative ideas that may not have surfaced otherwise. Not all environments encourage play, though. 

Mitchel Resnick, Professor and Director of the Lifelong Kindergarten group at MIT, uses the metaphor of playpen vs playground to differentiate the different kinds of play they support. A playpen is a restrictive environment where children have limited opportunities to explore, whereas a playground promotes open exploration, problem solving and creativity.

So how does one create a healthy playground? Here are a few ways to promote play in student work.

Tinkering

Environments that support guided and open exploration have been found to be more effective in student learning. To allow for more tinkering, allocate time during projects for students to explore different ideas or directions to pursue, even if most of them don’t lead to any success. Similarly, allocate time for students to iterate after they have chosen an idea and started developing it more. Asking students to explain the thinking behind their ideas also helps them discover shortcomings that they can improve as they iterate. The focus during tinkering is not to judge ideas, but simply to understand and help students elaborate the idea in as much depth as possible. 

Social Interaction

Most play has a social element that allows ideas to be exchanged freely. Creating a space and time where students can explore others’ work and bounce ideas off of each other also helps in improving creativity and learning. The best ideas in a group setting tend to filter to the top and get incorporated by different teams. While this may feel like “cheating”, it’s how most innovation works in real life – by merging bits and pieces from others into your own unique creation. 

One way to increase healthy social interactions, is to teach students how to critique others’ ideas and allow them to suggest constructive improvements to other projects. When done well, this builds both social cohesiveness as well as critical thinking. 

Intrinsic Motivation

Creativity flourishes in environments that foster intrinsic motivation and suffers under extrinsic motivation. When students are intrinsically motivated they are more likely to explore and take risks. A focus on grades or scores can push students from intrinsic motivation to extrinsic motivation. Instead of external grades that evaluate project work, use self-evaluation forms so students can assess for themselves what aspect of their project could stand to improve. 

Play can be a powerful way to bring out student creativity and enhance learning. By creating a low stress environment where students can freely explore their own ideas and share with others, some of the beneficial aspects of play can be incorporated into student project work. 

How To Build Creative Confidence

Albert Bandura, a psychologist and Professor at Stanford, who first proposed the concept of self-efficacy, discovered that people’s beliefs about themselves plays a huge role in how they feel, think and act. People with a strong belief in their abilities tend to take on more challenging tasks and persist despite failures. As Prof Bandura explained, “A strong sense of efficacy enhances human accomplishment and personal well-being in many ways. People with high assurance in their capabilities approach difficult tasks as challenges to be mastered rather than as threats to be avoided. Such an efficacious outlook fosters intrinsic interest and deep engrossment in activities.

However, self-efficacy can take some time to develop. Here are three ways to ensure students continue to build some creative confidence during the school year.  

Build Mastery 

Before students can build any confidence in an area, they first need to learn and become proficient in that area. A first grader is not going to feel confident about tackling double digit addition in mathematics, until he can easily do single digit addition. According to Bandura, building mastery is the first and the most important step in building self-efficacy. 

From a creative confidence perspective, that implies building creative thinking skills, like associative or analogical thinking, that can be used in problem solving. So starting with simple challenges that exercise the creative muscles, and give students a chance to master different creative thinking approaches can go a long way in building confidence. 

Stretch, But Attainable Goals

Before students can take on challenging tasks, they need to first feel confident about their abilities. Experiencing successes, even small ones, builds confidence whereas early failures can lead students to question their abilities. Only when students have developed a strong sense of self-efficacy, are they persevere through failures. 

To build skills and confidence, create sub goals that stretch students’ thinking a little but they are able to achieve their goals with a reasonable level of effort. For example, asking students to come up with at least one idea using a specific technique before challenging them to come up with several. However, if the goals are too easy, then students might come to expect easy successes and will not build the confidence to persevere through more challenging tasks.  

Supportive Environment

Students learn as much from others as they do independently. When students see their peers solving problems creatively, they are more inclined to believe that they have the same abilities. In a similar vein, when teachers (and others) encourage students to keep going despite setbacks and express confidence in their abilities, students start to believe in their own abilities as well. For example, if a student isn’t sure about how others might perceive their idea, let them know why you think their idea is cool and worth pursuing. 

This expectation maps to the social persuasion in Bandura’s self-efficacy model. In an encouraging environment with positive expectations, a student might conclude, “If others think I am creative, then I must be creative.”

Teaching students creative thinking techniques, setting appropriate goals and creating a positive environment and expectations as students practice problem solving, can build their creative confidence. Armed with this confidence, students will be willing to take on challenging tasks, persevere through failures, all of which will set them up for success both in the short-term as well as long-term. 

A Simple Technique To Generate Fun, Original Ideas

Daniel Kahneman, in his groundbreaking book based on decades of his research, used the associative nature of the human brain to explain different cognitive biases that we inadvertently succumb to. The same associative aspect can also be used in understanding how our brains think creatively and how sometimes we fall into an “associative rut”, where we keep going in circles with the same few ideas.

One way to overcome the associative rut is to find a connection between completely unrelated concepts, an approach that sometimes lead to very original ideas. Another simple, yet surprisingly effective, technique to generate amusing and novel product ideas  involves making an association map.

In this approach, the idea is to connect concepts that are related but not directly. In the examples used in the study, the researchers focused mainly on sensory attributes like sight and touch, which lead to more observable incongruities. However, we found that this approach works just as well with other attributes as well. 

In this approach, you start with an initial product – the subject of your innovation – which goes in the center of the association map. From there, you branch out with a few different attributes like “used with”, “material” or “similar to” to come up with the first order of associations. Since these associations are directly related to the object, they don’t really provide a chance for incongruence or novelty. However, once you start branching out more to the second order of associations, then things get more interesting. That’s where, when you make a  connection back to the subject, it’s not very obvious but at the same time not too hard for people to find the connection reasonable. It’s the perfect Goldilocks association!

Here’s an example, using a simple classroom supply. Suppose you want to make a more interesting ruler. So you start with the ruler in the center and choose some attributes like “used with”, “material” and “similar to”. Then, you list different values for each of those attributes like the material could be plastic or wood. This gives the first order of concepts that are directly associated with the ruler. The next step is to find another set of concepts, the second order concepts, that are associated with the first order ones.  Finally, you try to connect back the second order concepts with the original object and see if that helps uncover an interesting idea. 

For example, a ruler could be made of a flexible polymer and another use case of a flexible material is a slap bracelet. By connecting the concept of a slap bracelet with a ruler, one can imagine making a slap bracelet with ruler markings which a student can wear and use as a ruler anytime they needed one. With this invention, you always have a ruler handy (pun intended) whenever you need it!

The reason that the association map works well is due to the incongruity theory. When people notice an incongruity, they can either find it amusing or be disappointed. When people can tie the incongruity back to the product then it results in an appropriate congruity and the product feels more fun, interesting or amusing, but when people can’t find an underlying connection, the product appears confusing. 

In this example, a flexible strip of plastic material connects the concepts of both the slap bracelet and the ruler. So the incongruity between a slap bracelet and a ruler just seems appropriate and fun when connected together. 

So, the next time you are trying to come up with a new product idea, instead of using the typical mindmap, try making an association map and see if that leads you to some fun, refreshing ideas.