How To Improve Creative Collaboration

After decades of living in near obscurity, Einstein published his theory of general relativity a little over a century ago. He had toiled away for years on those problems, and when he finally figured out his theory, the rewards and recognition that followed completely changed his life.

But did he really deserve all the accolades? Many of his ideas were fleshed out through regular discussions with his long time friends, Grossman and Besso. Grossman, in particular, was a gifted mathematician who helped Einstein at crucial points. So was Einstein really a lone genius or just a smart collaborator?

The answer is both. Einstein was both a lone genius and a smart collaborator. While he relied on his collaborators for solving some key parts, he also provided the insights and ideas that led to the theories. Removing any of the two elements would have resulted in failure.  

All significant creative accomplishments are the product of both individual excellence and fruitful collaborations. And as the problems and challenges we face become more complex, the importance of collaboration is only going to increase. 

However, collaboration is not easy. For instance, several studies have found that group brainstorming is less effective than individual brainstorming. The challenges that get in the way of productive group work include social loafing, evaluation apprehension and production blocking. 

So the real challenge in creative problem solving, is finding ways to balance both individual and group work. Given the challenges involved in group work, here are some tips to improve the quality of collaboration:

Interleave Solo and Group Work

One way to improve the creativity in a collaborative setting is to allow for both individual and group times in the problem solving process. Asking students to think of ideas before presenting to the group avoids the problem of production blocking in the group setting. During the group session, ideas can be pooled and combined, and if followed by another solo session where everyone gets a chance to reflect on the results, the outcome can be much better than either solo or group work. 

Additionally, some kinds of tasks are better suited for individual or group settings. For example, solo work in the initial ideation phase produces better results whereas evaluating ideas as a group is more effective than evaluating individually. 

Assign Clear Roles

Collaborative work also works better when team members have complementary roles that all contribute to the bigger task. Team members are more prone to social loafing when they all work on the same task but when each team member had a separate task, they are more motivated to do their share. These results were true even when team members knew that their individual work is not going to be identified in the task. 

Increase Attention To Group Ideas

The advantage of collaboration from a creativity perspective comes from being able to combine different ideas in new ways, which is a cognitively demanding task. Simply sharing each others’ ideas in a group setting does not help as much. However, allocating time to listen to different ideas and asking students to reflect on all group ideas, with the intent to find ways to integrate multiple ideas can improve the overall creativity of the group. Having a more diverse group also helps in this case, as each person brings a different perspective to the table all of which could potentially be combined in interesting ways.  

Creativity requires both individual and group work to flourish. Truly creative ideas might start with an individual but really take wings when they meet other ideas and perspectives. Students need to build skills for both working independently and collaboratively, in a way that produces better solutions and learning. 

3 Reasons To Encourage Peer Learning In The Classroom

Lev Vygotsky, a highly influential Soviet psychologist, believed that learning in children is heavily influenced by social interaction. At the earliest stages, an infant’s unsuccessful grasping motion is (incorrectly) interpreted as pointing by parents and their subsequent response determines what the baby learns about that gesture. This kind of learning isn’t just limited to the infant stage or to simple tasks. Higher order cognitive processes, he believed, follow the same pattern – they start at the social level and are then internalized at an individual level.

Vygotsky’s theory of social constructivism is also the underpinning of the more recent peer and cooperative learning. While adults like parents and teachers play a crucial role in learning, children’s conversations with each other play an equally important role. Through exchanging ideas, asking questions or offering explanations children can help each other build better mental models of the concept they are learning. 

The advantages to peer learning aren’t limited to knowledge building. Several research studies have shown the benefits of using peer learning that go beyond the cognitive domain. Here are three reasons why peer learning can be beneficial to students and culture:

Better Learning Outcomes

The biggest advantage of peer learning is the increase in academic achievement. Several structures of peer cooperative learning, like Student Teams-Achievement Divisions and Teams-Games-Tournament, have been studied and all of them consistently shown that students perform significantly better with peer learning than without. While the majority of these studies focused more on knowledge acquisition, there are indications that peer learning is just as beneficial for building higher order thinking skills. In one study researchers broke out tasks into “high cognitive level” and “low cognitive level”, and found positive achievement gains on the high level items. 

Positive Social Gains

A key benefit of peer learning is the increase in communication and social interaction skills among students. One study found that the gains in cooperative learning skills correlated with social gains both in and outside of the class. Students in peer learning have also reported more positively on mutual concern –  liking their classmates’ and feeling that their classmates like them too. 

Improved Racial Relationships

Cooperative peer learning has been found to be one of the best ways to improve racial relationships. Several studies have documented that students in mixed race groups, name more of their classmates from different races as friends compared to control groups. One followup study found that the students who had worked in interracial groups made significantly more cross-racial friendships several months after the study ended. 

In our programs, peer learning is a central component in both structured and unstructured formats. For example, in our “How To Be An Inventor” program, we teach students how to give constructive feedback to each other. Before students present their ideas to the group, we explain that the goal for the students is to improve each other’s ideas and make it the best possible version. With that goal as the backdrop, we often find that students ask great questions and offer concrete suggestions to improve each others’ ideas. Peer learning is also supported in other unstructured ways when students browse their friends’ solutions online or when they walk over and see how others are working on a problem. 

While there is no formal reward associated with being constructive peers, the social recognition that comes with it, is enough to cognitively and emotionally engage students. In addition, we often find that students build more confidence and start relating better to their classmates.

Summer Camp: Designing Board Games

We just wrapped up our multi-disciplinary summer camps this year, and once again had so much fun guiding our middle schoolers in their creative journey! Our challenge for students this year was to design original board games based on their own areas of interests. We partnered with Archimedes school, who taught 3D printing, so students could make meeples and dice for their games.

By asking students to design a game around their passion or interests, our goal was that they would bring their domain knowledge on the topic, without which they wouldn’t be able to make a sufficiently creative game. In addition, we expected them to be more engaged during learning and more incentivized to put in extra effort to create the best version of their idea. 

Game Design Concepts

To design a good game, students had to first learn some basic game concepts like game mechanics, victory conditions and tension. To make learning more relevant,  we brought in common (and a couple not-so-common) board games that students used in deconstructing the various elements. We also used other games like Rock-Paper-Scissors to demonstrate the concept of balance in a game (and it also gave us a chance to sneak in some math and logic). They figured out that a Rock-Paper-Scissors version with an even number of elements can never be balanced, and then had a blast designing their own balanced versions with more than three elements!

Creative Process

While planning for the camp we also designed how the creative process would flow. If you ask a student (or most adults for that matter) to come up with an original idea, it often stumps them. Integrating a creative process into the workflow can give students the tools and direction to think creatively, and makes the process far less intimidating. 

The two techniques we focused on for the camp were analogical and associative thinking, which we felt were best suited for this scenario. 

To start with students first picked a game they liked and created an analogous version based on their interest. As a simple example, suppose the theme is to teach children about nutrition and health, and the model game is Snakes and Ladders. After deconstructing the game into its elements, one could design a new board game where some spots, like eating junk food or catching a cold makes you lose spots while exercising might make you go forward more spots. 

At this point the game still looks a lot like Snakes and Ladders. You could then start associating  with other game elements and modifying the game. For instance, you could add chance cards (e.g. falling and breaking a bone that sends you back a few spots) or convert the game to a point based system. By using different game elements, the game now starts to evolve differently and takes a very different shape. 

Student Designed Games

It was fascinating to see the students come up with very interesting, and very different, ideas for their board games. Here is a sampling of the board games students designed:

  • Rainforest Exploration – A game that teaches you about different animals in the rainforest as you race to the finish. 
  • Sun Power: A game that incentivizes using renewable energy sources. 
  • Collect-It: An interior design game, where you race to decorate your room. 
  • Archi-tex: A game where you have to be the first one to build a 2,000 ft building. 
  • Prime Switch: A fast paced math game that tests your computationals skills.
  • Soccer Board Game: Score goals by answering soccer trivia questions. 

The most fun part, though, was to see the excitement and energy as students got ready for the final demo to parents. Almost every student found last minute mistakes or changes that they just had to fix, but eventually all of them were able to put their demo together! And of course, they all found several ways that they could have designed things differently. 

We hope they enjoyed playing their game with friends and family, and maybe even designed their next versions!


The Neuroscience Of Creativity

A few hours after Einstein died, Thomas Harvey, the pathologist who performed his autopsy, removed Einstein’s brain without his family’s permission and against Einstein’s wishes of what he wanted done with his remains. He then carved out his brain into 240 pieces and preserved them. After hiding them for several years, he finally sent parts of the brain to other scientists to conduct studies and unravel the mystery behind Einstein’s intellectual prowess.

One of the studies found that Einstein’s brain, compared to 11 other control brains, had a higher ratio of glial cells to neurons in a part of the association cortex, which is responsible for integrating and synthesizing information from multiple parts of the brain. This possibly resulted from Einstein spending so much time visualizing and solving complex scientific problems in creative ways. Not everyone agreed with the study’s conclusions though, and there have been valid criticisms of the way this and other similar studies were conducted.

Since the time of these (potentially flawed) studies, we have come a long way in understanding about the brain structures that aid in creative and critical thinking.

In a recent study, researchers found that the ability to think creatively depends on the interconnectedness between different parts of the brain involved in creative problem solving. The three large-scale networks that span both hemispheres and aid in creative thinking are:

  • Default network: This network consists of the cortical midline and posterior inferior parietal regions of the brain structures. The default network is active when you are not in deliberate thought and helps in idea generation.
  • Executive network: The executive network, which is composed of the anterior and lateral regions of the prefrontal cortex and other interconnected regions like the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC). The executive network is active when you are consciously thinking, and is responsible for planning, reasoning and decision making.
  • Salience network: The salience network, comprised of bilateral insula and anterior cingulate cortex facilitates the transition between the default and executive networks.

The study, which used connectome based predictive modeling, found some interesting results.

First, people who were more creative showed dense functional connectivity between the parts of the brain that comprised the default, executive and salience networks. Of the highest connected nodes in the high creative network, almost a half were in the default network followed by those in the salience and executive networks. In comparison, the low creative network showed diffused connectivity mainly in the subcortical/brainstem regions. Second, creative people were able to engage simultaneously parts of the brain that are typically supposed to work in isolation. For example, the default and executive networks, which correspond to the ideation and evaluation phases respectively, are normally assumed to be active at separate times. Creative people, however, are able to engage these networks at the same time.

If you are one of the people who believe they weren’t born with the creative gene (or the creative brain), there is reason for some hope.

Studies have also found that training for creativity can be effective. In a study where participants were trained on divergent thinking, researchers found that due to neural plasticity, structural changes were found in some parts of the brain post training that caused improvement in the participants’ creativity.  Similar effects have been found in other studies that looked at music and visual art training, where researchers found plasticity in neural pathways that enhance creative cognition.

All of this clearly indicates that, from a cognitive development perspective, it’s vital to have creativity and arts integrated into school curriculum. As the researchers in the creativity training study summarized, “Obviously, it is promising that human creativity capacities can be developed through well-designed training programs, which may contribute to social development and human civilization.

How Technology Can Improve Deep Learning

In an experiment to evaluate the impact of media on learning, researchers showed volunteers a presentation about the country Mali. Some of the subjects saw a text-only version of the presentation while the others saw a multimedia version that included additional audio-visual content.

After the presentation, the researchers gave all subjects a quiz on the material. The text-only group were able to answer more questions correctly on the quiz compared to the multimedia group. The outcome of this experiment was summarized as, “The text-only readers found it to be more interesting, more educational, more understandable, and more enjoyable than did the multimedia viewers, and the multimedia viewers were much more likely to agree with the statement ‘I did not learn anything from this presentation’ than were the text-only readers.”

Technology has undoubtedly made a big impact in education. Apps and games that teach specific reading and math skills have shown to improve learning outcomes, and productivity apps have made research and collaboration so much more easier in the classroom.

However, technology doesn’t just provide us with tools to learn specific skills or be productive, it also actively changes the way we think and process information.

And quite often, these changes inadvertently end up being detrimental to learning in some ways. Professor Patricia Greenfield explains, “Although the visual capabilities of television, video games, and the Internet may develop impressive visual intelligence, the cost seems to be deep processing: mindful knowledge acquisition, inductive analysis, critical thinking, imagination, and reflection.

Inappropriate or overuse of technology can significantly impair learning, by breaking attention and interrupting the learning process. Our brains contain two types of memory – short-term and long-term. Long-term memory, which can hold information for a long periods of time, is the seat of understanding where complex schemas and patterns that give us meaning are held. Short term memory on the other hand is fragile – it can hold information for only a few seconds. One type of short term memory, called the working memory, is what we use when we have to retain partial results as we work through a math problem or follow a sequence of steps. However, working memory, unlike long-term memory, is small and can hold only a few chunks of information at a time. After the contents of the working memory are processed, they can be encoded in long term memory for future retrieval.

The challenge with this learning process is that since working memory can retain information for only a few seconds (~20 sec), and any distractions in that time interrupt the flow of information to long-term memory. Being able to focus and reflect on concepts for extended periods of time are critical to learning new things.

In addition to inferior learning, poorly designed technology can have other harmful effects.  When the ability to focus on tasks decline, it can lead to feelings of boredom and an increased desire to seek more external stimuli. Time spent with media (television, video games) has been shown to result in ADHD like behavior.

If we want to promote critical and creative thinking, essential for deep learning, we have to unlearn the way technology is designed. Here are some things to pay attention to when designing technology products for use in education that can promote deep learning.

Pay Attention To Passive Switches

Switches are interruptions that result in students switching between different tasks. Passive switches, as opposed to active switches, are those that students don’t initiate themselves. Obvious examples of passive switches are email notifications, chat features, or pop-ups within an app that are meant to help students but inadvertently break their focus.

Less obvious examples of passive switches include using hyperlinks in the text, often with the good intention of providing information to fill the gaps. Unfortunately, hyperlinks also subtly nudge students into clicking before they have had sufficient time to process information, thereby breaking their flow. In one experiment, groups of people were asked to read the same piece online writing with different number of hyperlinks. Results showed that as the number of hyperlinks increased, reading comprehension went down. The researcher explained her findings as, “Reading and comprehension require establishing relationships between concepts, drawing inferences, activating prior knowledge, and synthesizing main ideas. Disorientation or cognitive overload may thus interfere with cognitive activities of reading and comprehension.

Be Less Helpful

In an interesting experiment, researchers gave students a tricky puzzle to solve that involved moving colored balls between boxes based on some rules. One group of students got a helpful version of the software that had on-screen assistance and other cues, while the other group got a bare-bones version with no hints or guidance.

In the early stages, the helpful group outperformed the bare-bones group in how fast they solved the puzzle. However, as the test progressed the bare-bones group got more proficient and was able to solve faster with fewer incorrect moves as compared to the helpful group, which gave clear indication that they were planning ahead and using strategy.

It didn’t just end there. Eight months after running the experiment, the researchers invited the students again and gave them similar puzzles to solve. The group that used the unhelpful version of the software was able to solve the puzzles twice as fast compared to the helpful group.

When help is too easily available, it robs students of the opportunity to think for themselves and build critical and creative thinking skills.

Be Judicious With Media And Visuals

Unnecessary media usage can overload working memory making it harder to process and assimilate knowledge.

In an experiment conducted on college students, researchers showed groups of students a typical CNN broadcast. One group saw the broadcast along with infographics that flashed on-screen and text-crawls on the bottom. The other group saw the simpler version of the same broadcast without any additional infographics or text-crawls. Subsequent testing showed that the multimedia group retained far fewer facts about the news compared to the simpler group. The researchers theorized that the “multimessage format exceeded viewers’ attentional capacity.

Keeping things simple when working with different forms of media works much better from a learning perspective. While different forms of media are good to use individually, using them simultaneously can overwhelm working memory.  

 

To design educational technology we need to carefully assess if the technology or feature encourages students to think and reflect, or does it distract them. When we introduced a team related feature not too long ago, we realized it was working a little too well, to the point of getting in the way of real learning. We decided to remove the feature and will likely introduce it again in a different incarnation, where it improves productivity without being a distraction.

Technology has great potential to improve student learning in different ways, but it requires us to be more mindful of the learning process while designing it.