How Play Helps Creativity and Learning

Some of the most groundbreaking innovations didn’t get their start from a serious effort to solve a problem but from much more frivolous, playful ideas. After the first music boxes were invented, people got interested in making programmable music boxes that could play different music when the cylinder was replaced. But this basic idea – that the behaviour of a machine could be changed – became the catalyst for more serious inventions like the programmable Jacquard loom and the general purpose computer. 

Most people tend to dismiss play as childish and silly. However, a playful approach to problem solving can bring out fresh, creative ideas that may not have surfaced otherwise. Not all environments encourage play, though. 

Mitchel Resnick, Professor and Director of the Lifelong Kindergarten group at MIT, uses the metaphor of playpen vs playground to differentiate the different kinds of play they support. A playpen is a restrictive environment where children have limited opportunities to explore, whereas a playground promotes open exploration, problem solving and creativity.

So how does one create a healthy playground? Here are a few ways to promote play in student work.

Tinkering

Environments that support guided and open exploration have been found to be more effective in student learning. To allow for more tinkering, allocate time during projects for students to explore different ideas or directions to pursue, even if most of them don’t lead to any success. Similarly, allocate time for students to iterate after they have chosen an idea and started developing it more. Asking students to explain the thinking behind their ideas also helps them discover shortcomings that they can improve as they iterate. The focus during tinkering is not to judge ideas, but simply to understand and help students elaborate the idea in as much depth as possible. 

Social Interaction

Most play has a social element that allows ideas to be exchanged freely. Creating a space and time where students can explore others’ work and bounce ideas off of each other also helps in improving creativity and learning. The best ideas in a group setting tend to filter to the top and get incorporated by different teams. While this may feel like “cheating”, it’s how most innovation works in real life – by merging bits and pieces from others into your own unique creation. 

One way to increase healthy social interactions, is to teach students how to critique others’ ideas and allow them to suggest constructive improvements to other projects. When done well, this builds both social cohesiveness as well as critical thinking. 

Intrinsic Motivation

Creativity flourishes in environments that foster intrinsic motivation and suffers under extrinsic motivation. When students are intrinsically motivated they are more likely to explore and take risks. A focus on grades or scores can push students from intrinsic motivation to extrinsic motivation. Instead of external grades that evaluate project work, use self-evaluation forms so students can assess for themselves what aspect of their project could stand to improve. 

Play can be a powerful way to bring out student creativity and enhance learning. By creating a low stress environment where students can freely explore their own ideas and share with others, some of the beneficial aspects of play can be incorporated into student project work. 

Designing Products to Build Intrinsic Motivation

In a recent study researchers wanted to explore the relationship between rewards and motivation in the context of education. In order to understand the impact of gamified elements on student motivation and learning, they designed a long-term study for students enrolled in a semester long course. Students were divided into two groups – a gamified group that used a reward system aligned with the learning goals, and the control group that received the same instruction but without any gamified elements. They looked at student grades at the end of the course along with student surveys, and confirmed what some educators had always suspected.

The researchers found that the non-gamified group not only did better at the end of the semester exam, they also reported higher levels of motivation and satisfaction at the end of the class! As the researchers explain, “The results suggest that at best, our combination of leaderboards, badges, and competition mechanics do not improve educational outcomes and at worst can harm motivation, satisfaction, and empowerment. Further, in decreasing intrinsic motivation, it can affect students’ final exam scores.

While typical gaming elements like points and badges can lead to increased engagement in the short term, it is now believed that the initial appeal is due to a novelty effect, and that engagement and motivation decline as the novelty wears off. And this effect is more pronounced for younger age groups, where novelty and interest declines faster.

Educational products routinely employ rewards like badges and scores to get initial interest and traction among users, however, as research is now pointing out, these elements have negative long term consequences as they promote extrinsic motivation instead of building intrinsic motivation among students.

So,  how can we design educational products that focus on building students’ intrinsic motivation?

Edward Deci and Richard Ryan, professors of Psychology, have studied motivation for several decades and developed the Self Determination Theory (SDT) of motivation. According to their theory, three innate psychological needs play a role in motivation – competence, autonomy and relatedness. The main premise behind their theory is that humans have an inherent tendency to learn, have agency in their development and connect to others. Their theory has been widely used in many contexts, including gamification.

Based on the underlying theory of self determination, here are some high level product approaches that can be used in lieu of rewards to build the right kind of motivation:

Exploration

Creating a playful environment that leads to self-directed exploration ties to the underlying need for autonomy and competence. Games or products should allow for the freedom to fail, by allowing users to recover from mistakes without penalty. Games should also provide a freedom of choice, where users can decide what they want to work on or what skill to develop.

Feedback

In a classroom, feedback can be slow and constrained as teachers can only provide feedback one at a time. Games where feedback can be immediate can have a positive impact on the need for competency. Feedback messages that are actionable (guide the student in the right direction) and focus on growth mindset have been found to be effective.

Collaboration

A typical classroom environment fosters competition among students instead of collaboration, which in turn reduces intrinsic motivation. Elements like leaderboards have the same effect due to social comparison. A better way would be to design products that allow meaningful collaboration among students, and tap into the need for relatedness. Social cues that signal working together have been found to boost intrinsic motivation.  

 

Intrinsic motivation has been found to link positively to learning outcomes as well as personal wellbeing. Introducing the right kind of gamified elements into product elements can boost intrinsic motivation among students, but it involves walking away from more traditional elements in games like badges and points.

Effective Feedback for a Growth Mindset

Suppose your child comes to you disappointed after receiving a B- on a math test that he worked really hard preparing for. What would you say to him?

If you already know about growth mindset, you know saying something along the lines of, “It’s OK, maybe you are just not a math person” isn’t the smartest thing. You should be focusing on the effort he put in instead of his inherent ability.

How about – “Great effort! I am sure you’ll do better next time”? Would that work better?

Not really.

In general, focusing on effort as opposed to ability increases intrinsic motivation over the long term. However, in certain situations, focusing on effort can actually make things worse. When the work results in a failure, focusing on effort solely can still leave the child feeling inept. Or if effort is overemphasized for relatively easy tasks, children may infer that as a sign of their low ability.

Growth mindset and intrinsic motivation go hand in hand. Children with a growth mindset are more likely to regulate their behavior for intrinsic reasons (e.g. I enjoy doing this activity) whereas children with a fixed mindset are more likely to regulate their behavior for extrinsic reasons (e.g. I want my parents to think I am a good student).

Having a growth mindset is clearly superior to a fixed mindset, since growth mindset enhances intrinsic motivation which in the long term improves perseverance and resilience against failure. But how do you inculcate a growth mindset in your child? If you as a parent model a growth mindset would that rub off on your child?

Carol Dweck, Professor at Stanford, and the originator of the mindset theory of intelligence, found that there is no link between parents’ mind-sets and their children’s. Parents’ own mindsets aren’t generally not visible to their children because they don’t necessarily manifest in parental practices. For instance, parents can have a growth mind-set but still praise their child’s talent, leading their child to develop a fixed mindset. 

However, one factor that does influence children’s mindset is not their parents’  intelligence mindset but their parent’s failure mindset. As Carol Dweck explains, “parents can view failure as either enhancing or debilitating, that this belief manifests itself in their reactions to their children’s setbacks, and that it influences their children’s intelligence mind-sets.

So how can you handle a  failure situation more effectively?

When faced with a setback, a better approach is to frame the feedback in a more broader process-oriented feedback that includes thoughtful analysis of strategies and new approaches to explore. Think of the effort-oriented feedback as a subset of the larger process-oriented feedback. 

So, instead of simply saying “Good effort!”, use Prof Dweck’s recommendation and try this – “The point isn’t to get it all right away. The point is to grow your understanding step by step. What can you try next?” And follow this up with a discussion of what strategy did not work and what strategies might be worth trying the next time.