A Summer Full of Inventions

After an exciting and busy spell, we recently concluded our summer programs that introduced children to creativity and inventing.

This year, we expanded on our summer camp from last year. We ran our invention themed camps for two age groups – a younger group (1st – 4th grade) and an older group (5th – 8th). The younger group had weekly invention themes (like inventions to simplify chores, making functional clothes etc). For the older group, we did a 2-week camp in collaboration with the Archimedes School (who taught 3D printing). The students made pressure sensors from individual components, 3D printed a casing for their sensors and then used creative thinking techniques to come up with new inventions that would use pressure sensors in a meaningful way.

Our goal was for children to experience the entire creative flow from ideation to prototyping, and learn creativity skills that would last them for longer. Through these creativity techniques, we wanted children to come up with many different ideas to solve a problem. In fact, with the older group, we even tallied how many ideas they got with and without using creativity techniques. Everyone in that group was able to come up with 2x-3x more ideas by using one of the creative thinking approaches! Here are the things we focused on in our camps:

  • Understanding Creativity: We started each camp with discussing what creativity means – that it involves coming up with ideas that are both original and useful.  Creativity is often confused with art, and it was helpful to clarify that in the beginning with a discussion of what makes something creative.
  • Creativity Techniques: For both groups, we focused on two core creative thinking techniques to coming up with original ideas – “Put to Another Use” and “Associative Thinking“. Being able to adapt an object for a different use and finding ways to combine a random object or concept, are fundamental processes in thinking creatively and seem to underlie other creativity techniques. The older group also did other techniques like reversing assumptions, and processes like MindMapping to help them brainstorm more effectively.
  • Evaluating Creativity: While it’s important to understand what creativity is, we thought it would be even better if the students knew how they can measure creativity. So, everyone had to evaluate their own as well as others’ ideas on “originality” and “usefulness”. The older group also rated ideas on “impact” and “practicality”. This exercise really helped them in picking the most creative ones to pursue in a systematic way.
  • Telling a Story: It’s not enough to come up with a good idea – selling an idea is just as important. So we introduced storytelling and storyboarding concepts to help them tell a compelling story about their invention. The older group pitched their idea to the rest of the group and got useful feedback on their invention and pitch in return.  

We were truly heartened to see even the younger children apply these concepts and come up with creative ideas. And we ended up with some very neat inventions in the process!

The younger group came up with ideas like a sweater that converts into a hammock using drawstrings on the collar and bottom (notice the “Put to another use” skill being used here?), a pot with removable handles that also serve as spatulas, a couch with easy access storage bins and many more!

The older group used pressure sensor in many different ways and after searching through the patent database picked ideas that they believed were sufficiently unique and useful. We had a safe stovetop that will switch off when there is no pan on it, a laundry hamper that reminds you to do your laundry regularly, a pencil grip that detects when you are under stress and pressing too hard and several more. And what truly warmed our hearts was when one of the students commented during the demo day, “If all of these were not just prototypes, the world would be so much better!

We had a great time watching  our 40+ campers learn to play with ideas and hope they are inspired to continue their inventive journey beyond our summer camp.

If Pigs Could Fly…

In the late 80s, researchers studying logical learning in children gave a group of 4 year olds the premise that ‘all pigs can fly’ and that ‘John is a pig’. Most of the kids had trouble reaching the conclusion that ‘John can fly’, until the researchers changed the instructions a little.

When the researchers first told the kids ‘let’s pretend that [all pigs can fly]…’, their performance on this task improved significantly. Somehow, transferring the rule to a pretend world helped the children in reasoning abstractly about that world.

The exact mechanism of why pretending helps with reasoning is not fully clear, but research in the last couple of decades has shown that pretend scenarios play an important role in cognitive development.

Psychologists, Weisberg and Gopnik, have proposed that unrealistic pretend scenarios don’t just help with counterfactual reasoning – they are also important for causal learning which can in some cases be harder to do with real-world scenarios. As they explain about Einstein’s theories, “Einstein’s thought experiments are a good scientific example of how unrealistic counterfactuals can help to distinguish potential causal structures. Both relativistic and classical theories of physics make similar predictions in commonly observed cases. Considering very unlikely possibilities, such as a world where the speed of light is different, can help discriminate between these theories.

Unrealistic pretend scenarios are also an integral part of creative thinking and utilize, among other things, associative thinking. For instance, comprehending the statement, ‘If dogs had gills…’, requirescreation of an unusual conceptual combination (‘dogs’ and ‘gills’) with potential consequences that go beyond what is literally stated.

Torrance, also known as the father of creativity, included two tasks (‘Just Suppose’ and ‘Consequences Task’) around improbable situations in his Torrance Test of Creative Thinking.

Our newest category of brainteasers at MindAntix, ‘What Would Happen If…’, present unrealistic scenarios and ask users to come up with as many reasonable consequences as possible. Our goal is to build the cognitive processes underlying logical and creative thinking like disengaging with reality, making inferences and associative thinking.

So, the next time you are bored try making up a new world where the usual rules don’t apply. How would things be different in that world? What would happen as a consequence of those strange new rules? And maybe while thinking about that you might even discover a new insight about our own world!

Complete the Picture

We often get compliments and questions about our homepage graphics, so we figured we’ll explain the inspiration behind the design, and also announce our fun summer challenge!

The design is a riff on the Picture Construction Task, from the Torrance Test of Creative Thinking, or the TTCT. The TTCT was developed in the 1960s by Ellis Paul Torrance, a psychologist who pioneered research in Creativity in the United States, and has become the most widely used Creativity test in the world. Prof. Kyung Hee Kim, who first documented the decline in Creativity in the US has found that the TTCT predicts creative achievement better than any other creativity or divergent thinking test.

The TTCT contains open ended tasks grouped as verbal (using either verbal or non-verbal stimuli) or figural. As Torrance explains, “Each of the tasks is based on a rationale developed from some research finding concerning the nature of the creative process, the creative personality, or the conditions necessary for creative achievement. The tasks are designed to involve as many different aspects of verbal creative functioning as possible.”

Coming back to the Picture Construction Task, which helps to measure a few creative factors like Originality, Elaboration and  Abstractness of titles. In this task, you are given an initial part of drawing (a squiggle or a simple shape) and the goal is to draw a picture where this initial drawing would play an integral part. Below are the instructions that accompany the task:

At the bottom of this page is a piece of colored paper in the form of a curved shape. Think of a picture or an object in which this form would be an important part. Then lift up the piece of colored paper and stick it wherever you want it on the next page, just like you would a postage stamp. Then add lines with pencil or crayon to make your picture.

Try to think of a picture that no one else will think of. Keep adding new ideas to your first idea to make it tell as interesting and as exciting a story as you can.

When you have completed your picture, think up a name or title for it and write it at the bottom of the page in the space provided. Make your title as clever and unusual as possible. Use it to help tell your story.

It’s easy to see how our design ties to the Picture Construction Task. We used each letter in the word “creative” as a stimulus for another picture, like the letter “a” is part of a snail’s body or the letter “v” is part of a star. That brings us to our creative summer challenge.

Can you think of a new way to write “Creative” using each letter as a starting point? Use your summer break to think of a clever idea and send it for a chance to win an Amazon gift card! 

As you start working on the challenge, try to think of ideas no one else would come up with it. Be sure to include an explanation of your design when you send it to us. And don’t worry about your artistic skills – what we are looking for is how creatively you use each of the letters in the design, not necessarily how well you can draw. 

Happy Creative Thinking!

Email your entries (.jpg, .png format) to hello@mindantix.com by Aug 31, 2016 to be eligible for the contest. Gift card value is $25. Contest open to US residents only.

 

Evaluating Divergent Thinking

From the Greek Daemons to Galton’s historiometry, human creativity has been a subject of fascination for many centuries. Formal scientific inquiry into this space, however, is considered to have started after J.P. Guilford’s Presidential Address for the American Psychology Association in 1950 where he stressed the importance and need for research into Creativity. That led to a spate of research in different aspects of Creativity and finally some consensus on what Creativity means.

Creativity, by most definitions now, means coming up with ideas that are both novel and useful. Psychologist, Dean Keith Simonton, expressed Creativity as

Creativity = Originality x Appropriateness

In other words, if an idea is original, but it doesn’t solve any problem or isn’t appropriate in that context, then it is not creative. Similarly, if the idea is useful and appropriate but isn’t new, then again it isn’t creative.

This focus on both originality and appropriateness is what makes Creativity tricky. And what’s the most recommended way of coming up with a creative idea? Coming up with lots of ideas!

In fact, Guilford believed that divergent thinking, or the ability to generate many ideas to a solution, was an important subset of creative thinking. While he did not think that divergent thinking alone could be equated with creativity, it has become one of the more well-known aspects of creativity.  

Guilford’s model of divergent thinking has turned out to be a useful way to evaluate individual creativity, and it’s the model we are now using for teachers to evaluate student responses on MindAntix. In his model, divergent thinking includes 4 different components, explained using an Alternate Uses Task (possible uses of a leaf):

Fluency: Fluency is the ability to generate lots of ideas. If Ann comes up with 20 uses for a leaf while Ben comes up with 7, then Ann shows more fluency than Ben.

Flexibility: Flexibility is the ability to come up with different categories of ideas. Suppose Ben thought of using the leaf as a placemat and as a shelter for a bug, and Ann thought of using the leaf as a paintbrush and as a quill. Ann’s ideas fall in the same category of writing/drawing instrument whereas Ben’s ideas fall in different categories. In this case, Ben shows higher flexibility than Ann.

Originality: Originality is the ability of generating unique or unusual ideas. Using the same example as above, if no one else thought of Ben’s idea of using the leaf as a bug shelter, then that idea is original. Practically, responses given by 5% or 1% of the respondents are considered unique.

Elaboration: Elaboration refers to the ability to add details and fill in the gaps. For instance, if Ann responded with “hold the leaf from the stem and dip the tip into paint to use as a paintbrush” instead of “use as a paintbrush”, she would score higher on elaboration.  

Torrance, psychologist most famous for his work on creativity, lamented that “Children are so accustomed to the one correct or best answer that they may be reluctant to think of other possibilities or to build up a pool of ideas to be evaluated later.” Guilford’s model of divergent thinking provides a handy way to help move children move past the one-right-answer mindset.

 

Computational Thinking and Creativity

In the decade between 2002 and 2012, the number of Bachelor degrees awarded in Computer and Information Sciences fell by more than 17%, the largest decline for any field in that time period. While graduation rates in Computer Science have been ticking up more recently, we still do not produce enough graduates to fill the growing demand for STEM jobs prompting Obama to comment: “Growing industries in science and technology have twice as many openings as we have workers who can do the job.”

One reason for the low number of STEM graduates is the high attrition rate (~50%) due to students who switch their major. Students whose first exposure to a programming language is in college find the coursework and getting good grades challenging. Researchers studying this phenomenon found that, “due to the difficulty experienced in learning to program, some students drop from the major all together instead of continuing and learning a different programming language or choosing an alternative technology track.” One clear solution is to start introducing computer science fundamentals, or computational thinking, earlier in schools. Computational thinking is an approach to formulating problems in a way that computers and other tools could be used to solve them.

Proponents of introducing computational thinking in K-12 point out, “All of today’s students will go on to live a life heavily influenced by computing, and many will work in fields that involve or are influenced by computing. They must begin to work with algorithmic problem solving and computational methods and tools in K-12.” That leads us to the next problem – how do you introduce a kindergartner to algorithms and programming concepts?

One approach that is gaining traction worldwide is the Computer Science Unplugged project. Initiated at the University of Canterbury, it uses games and activities to expose children to the kind of thinking that is expected of a computer scientist, all done without using any computers. One reason that the Unplugged approach is becoming popular is that it requires less commitment and resources to introduce children to computational thinking. But what exactly does computational thinking involve?

Mitchel Resnick, professor at MIT whose group created the Scratch programming language for kids, and his collaborator identified three dimensions of computational thinking – computational concepts (the concepts designers employ as they program), computational practices (the practices designers develop as they program), and computational perspectives (the perspectives designers form about the world around them and about themselves).

In our newest after-school program, currently in pilot, we are using the unplugged concept to not only introduce children to computational thinking concepts (like sequential logic, conditionals or flowcharts) but also creative thinking (changing perspectives, associational and analogical thinking) and storytelling. During this program children will create a puppet show that incorporates some programming and creative thinking elements, to make a fun and interactive final show.  

Both computational thinking and creative thinking are now considered critical 21st century skills. In fact, merging creative thinking exercises in computer science education has actually been shown to improve learning of computational thinking. Our goal with this program is to help children grow into more effective problem solvers.