Will AI Make Us Dumber?

Back in the early 1980s, a researcher named James Flynn was studying old IQ tests when he noticed something strange. Between 1932 and 1978, IQ scores had shot up by almost 14 points! This became known as the “Flynn Effect,” and researchers kept seeing IQ scores rise by about 3 points every ten years. But then, in the early 2000s, things took a turn. Studies in a few Scandinavian countries found that IQ scores were actually dropping. And get this – a recent US study confirmed the trend, with the biggest decline in young adults aged 18-22.

This drop in critical thinking skills is like what happened to creative thinking scores over a decade ago. Professor Kyung Hee Kim discovered that student creativity, as measured by the Torrance Test of Creative Thinking (TTCT), has been tanking since the 1990s. Her analysis even led to a super popular Newsweek article called The Creativity Crisis. She found that important aspects of creativity, like coming up with original ideas and being able to brainstorm lots of ideas, have seriously declined over the years. And the decline has gotten even worse in the last ten years.

So, what’s changed that’s causing this decline in higher-order thinking skills? It’s not a huge leap to think that the rise of technology over the past couple of decades might have something to do with it. Both studies suggest that certain aspects of technology can actually hinder the development of creative and critical thinking skills.

With AI rapidly gaining adoption — over 45% of students in high school already use AI to help with their assignments — what are the possible implications on cognitive development of children. 

How We Learn

To understand how thinking is essential for learning, let’s take a closer look at what happens in our brains when we encounter new information.  Learning can be seen as a three-step process. First, our brain encodes new information and stores it in our working memory. It’s like translating a high-resolution image of an apple into a simpler icon or symbol. Next, this information might need to be moved to our long-term memory. Imagine you see a purple apple for the first time. Your brain needs to pull up your existing mental image of an apple, update it, and then store it back. This shows that working memory isn’t just storage – it’s more like a mini-computer with multiple functions. The latest model of working memory includes three specialized memory subunits and an executive controller that manages attention and communication with other parts of our brain.

One memory subunit is the visuo-spatial sketchpad, which lets you hold and modify visual concepts. For example, try picturing a red apple, then change its color to green and add some leaves to the stem. If you could do this, it all happened in your visuo-spatial sketchpad. Another subunit, the phonological loop, processes auditory information. It has a small temporary memory that needs constant refreshing.  When someone tells you their phone number and you repeat it to remember it, you’re using the phonological loop.  Working memory is where the magic of creativity and learning happens. It creates specialized models to speed up future processing. By comparing, contrasting, and finding connections, our working memory helps us understand the world better. It’s also where new ideas are born.

The challenge is that deep thinking takes time. Learning something new or creating something original means changing your internal mental models, and that requires serious brainpower.

Biological Bandwidth of Learning

The late MIT professor, Patrick Winston, was renowned for his lectures, especially his super popular annual talk, “How to Speak.” One of his top tips? Ditch the slides and use the board. Slides are good for exposing people to a topic, but the board is better for informing them. Why? Because writing on the board forces you to slow down, giving your audience more time to process what you’re saying. As Winston puts it, “The speed with which you write on the blackboard is approximately the speed at which people can absorb ideas.” 

This simple trick perfectly illustrates the concept of “biological bandwidth” when it comes to learning. Your brain needs time to absorb and store new information—kind of like how long it takes to physically write stuff down.

So, what happens when we try to cram too much information into our brains too quickly? Our working memory doesn’t have time to process everything properly. Instead of analyzing, comparing, and updating our mental models, it takes shortcuts, relying on things like stereotypes or gut feelings. This leads to quick decisions, but they’re often wrong because they’re not based on solid reasoning.

How AI Can Make Thinking Skills Worse

The problems with AI are similar to the problems of relying on too much tech, but way worse. It all boils down to “cognitive offloading,” which is when we let AI or other tech do the thinking for us. If we keep this up, our own critical and creative thinking skills will get rusty, and could even disappear for good. It’s not hard to imagine how bad that would be for society.

Students are hit even harder. During the teen years, our brains are growing and rewiring big time, especially in the prefrontal cortex. If we don’t use certain abilities, our brains just prune those connections away. So, if you’re not flexing those creative and critical thinking muscles, you might not be able to think as deeply as an adult.

Lots of schools and students are already using AI, and while it can be helpful in many scenarios, there are also some traps that are easy to fall into.

The Effort Trap

It’s obvious that using AI to write an essay without putting in any effort is bad for learning. But there are also sneakier ways that AI can trick us into thinking less. This is the effort trap: when you think you’re being critical and analyzing AI’s output, but you’re actually using less brainpower, or even thinking in a totally different way.

Here’s an example that can mess with your creativity in the long run. People often use AI to generate ideas, which they then refine. But if they had taken the time to think for themselves first, they might have come up with totally different ideas. Coming up with that initial spark is an important skill in itself, especially in ambiguous situations. By relying on AI, we’re short-circuiting our own creativity.

The Competence Trap

The competence trap is when you think you’re a pro at something, but you’re really just leaning on AI as a crutch. This can trip up both students and teachers. Teachers might think their students are killing it based on the AI-polished work they see, and move on to harder stuff before the students are actually ready.

The Capacity Trap

When information is super easy to get, it’s tempting to consume way more than our brains can handle. We’ve all been in lectures where we thought we understood everything, but then got totally lost when it was time to do the work. This is the capacity trap: it’s easy to keep chugging along without stopping to reflect, but that can lead to a big crash later on.

Making AI Work For You

AI can definitely help us be more productive and learn new things. For example, getting instant feedback from AI is very impactful because you can make changes while everything is still fresh in your mind. Waiting a week for feedback on an essay isn’t as effective because you have to switch gears and get back into that mindset. Also, teachers can use AI to personalize lessons for each student, which helps them stay engaged and understand the material better.

So, how can we use AI in a way that actually helps our thinking skills instead of hurting them?

The key is to be mindful of how much thinking you’re doing yourself and how much you’re leaving to AI. A good rule of thumb is to avoid using AI as a crutch right from the start. Instead, think about the problem first and try to come up with a solution on your own. Then, you can use AI to help you improve your work or get unstuck if you need to.

Introducing the “Invent in an Hour” Mini-Course!

At MindAntix, we’re passionate about igniting the spark of creativity in students. But let’s face it, coming up with truly novel ideas can feel daunting, and this is especially true for young students. That’s why we’re thrilled to announce a partnership with EvolveMe, an online platform from American Student Assistance, to launch the “Invent in an Hour” mini-course – a one-of-a-kind program designed to encourage students to become inventors in less than 60 minutes!

EvolveMe is a free online tool that helps students build different skills and explore various career options. Many students aren’t aware of the scope of education and career opportunities available after high school. ASA’s research indicates that students face a lack of awareness, access and confidence that can limit their growth and potential post high school. 

With our new mini-course, we aim to address these three areas. Students get a deeper understanding of what creative thinking is and how it applies to almost all fields. By breaking down the invention process into manageable, bite-sized steps, we equip students with the tools and confidence to embark on their own creative journeys.

Demystifying the Invention Process

With our approach, we flip the script on traditional creativity methods and remove the pressure of “solving” predefined problems. Instead of starting with a problem and seeking a solution, we guide students through the power of associative thinking, a technique that sparks innovation by combining seemingly unrelated ideas.

Here’s how it works: imagine combining the “stretchable” aspect of a bracelet with a pillow to make a revolutionary pillow whose thickness can be adjusted by stretching. Or picture a pair of headphones that can double as a mood detector. Associative thinking makes these seemingly absurd combinations possible, and more importantly, increases the likelihood of generating truly original ideas – all within a student’s comfort zone.

Bowerbird Inspiration: Nature’s Mastermind

Our guide through this creative adventure is Curio, a character inspired by the bowerbird, a fascinating avian species renowned for its remarkable creativity. Male bowerbirds meticulously collect an array of colorful objects – from bottle caps to berries – to construct elaborate displays, showcasing their ingenuity to attract mates.

Curio embodies the essence of the bowerbird, encouraging students to gather diverse ideas and assemble them into something uniquely their own. Just as bowerbirds use their nests to express themselves and interact with their environment, Curio helps students see how assembling various concepts can lead to surprising and effective solutions.

Transforming Ideas into Real Inventions

The “Invent in an Hour” mini-course goes beyond simply brainstorming. It equips students with the practical steps to turn their newfound concepts into reality. Here’s what they’ll learn:

  • Idea Generation: Students learn to generate ideas using associative thinking, encouraged by Curio’s playful guidance.
  • Originality Check: Participants use tools to check their ideas against patent databases, ensuring their inventions are not only useful but also original.
  • The Art of the Pitch: Students learn how to craft compelling pitches for their inventions, preparing them to present their ideas confidently.

By the end of this engaging mini-course, students won’t just have an understanding of the inventive process; they’ll have a tangible invention of their own, complete with a polished pitch ready to be shared with the world.

We believe that fostering creative confidence in students is not just about nurturing future inventors; it’s about empowering them to be problem-solvers, and lifelong learners. With the “Invent in an Hour” mini-course, we provide students with a stepping stone towards building their creative confidence.

3 Keys To Creativity And Computer Science

How can we combine creativity and computer science to create positive education outcomes? The demand for computer science and information technology graduates is expected to grow by 14.6% over the next decade, much faster than any other area. While the number of computer science graduates is increasing, it is still not enough to meet the growing demand for STEM related jobs. Technical jobs also pay significantly more than other careers, yet many students continue to shy away from STEM fields.  

So, how do we encourage more students to pursue computer science which leads to both a lucrative and a fulfilling career? Here are three strategies to address challenges that students face in technical areas. 

Change Mindset 

One of the barriers to learning computer science is the perception that not everyone can become good at it. Parents, educators and others can inadvertently reinforce this stereotype when they use phrases like “not a technical person”. Much like the mindset about math, which plays a key role in the poor performance among US students, limiting beliefs about computer science creates a hesitancy towards the subject. When the adults in a child’s life themselves feel traumatized with subjects like math or computer science, it’s not surprising that the child develops a fear of approaching that subject. 

The reality is that there really is no “math brain” or a “computer science brain”. Most people can learn these subjects once they get over their mental block and put in the effort to learn. Neuroscience research shows that the human brain is quite malleable and it grows when you are learning a new skill. MRI scans of students doing math show that when students make a mistake a synapse fires even when students are not aware they made a mistake. As a result the brain grows when students are struggling with a concept.  

The good news, however, is that mindsets can be changed. Growth mindset, a concept pioneered by Stanford psychologist, Carol Dweck, is one approach to help students shift their mindset towards a subject that they find difficult. Helping students recognize that the process of learning any skill is going to feel uncomfortable as your brain starts to grow and reconfigure itself in order to become good at the new skill.  

Beyond building growth mindsets, educators need to combat the harmful stereotype that computer science is not “cool” or that it’s for “nerds”. This is where framing computer science as a way to exercise creativity is useful. Mitchel Resnick, Professor at MIT and creator of Scratch, believes we need to view computers more as finger paint instead of as some esoteric technology. He explains, “…until we start to think of computers more like finger paint and less like television, computers will not live up to their full potential.” Just like finger paints and unlike televisions, computers can be used for designing and creating things. Encouraging students to use computers in different ways to solve problems, or create new things can shape their attitudes in a more positive direction. 

Build Thinking Skills Early

STEM fields face a high attrition rate (~50%) as many students switch their major part way through. When students’ first exposure to a programming language is in college, they find the coursework more challenging and are more likely to drop out of the course. One way to combat this problem is to start building computational thinking skills early on. Computational thinking is an approach to formulating problems in a way that computers could be used to solve them. 

Building computational thinking skills is not hard and doesn’t necessarily need expensive resources like computers and software for all students. As an example, the Computer Science Unplugged project uses games and activities to expose children to thinking styles expected of a computer scientist, all done without using any computers. Not only do students learn concepts but the group games also build social connection and make the whole experience more enjoyable. In another example, students create an interactive play while learning programming fundamentals (like sequential logic, conditionals or flowcharts) along with creative thinking (associational and analogical thinking) and storytelling. The advantage of using an unplugged approach is that students can be introduced to useful computer science concepts at a younger age without making it overwhelming for them. 

Add Project Based Learning

Projects are another way to make learning more engaging and combat the negative stereotypes students might hold at the same time. When researchers at a university in Ohio redesigned their computer science classes to encourage more creative and hands-on learning, they found that in addition to an improvement in the quality of student work, the three year retention rate increased by 34%!  This is especially important for women, who typically view computer science courses  “to be overly technical, with little room for individual creativity.” 

By encouraging students to apply the concepts they are learning towards a project of their own choosing, educators can create an environment that students personally find meaningful. It also helps students view computer science as another tool that they can use to solve problems that they encounter. 

Technology has become an integral part of our lives and most work now requires some level of technical competence. The demand for STEM, and especially CS, is only going to accelerate as we move further into the 21st century. To encourage more students to pursue computer science, parents and educators need to pay attention to limiting mindsets, provide creative opportunities to learn core thinking skills and projects to apply their knowledge in real-world scenarios.  

This article first appeared on edCircuit

Why Humility Is The Most Important Trait for Creative Leadership

Indra Nooyi, the former CEO of PepsiCo., took over the reins of the company in 2006. During the twelve years of her tenure, Pepsi’s revenue grew over 80%, cementing her reputation as a highly successful CEO. Nooyi led with a “Performance with a Purpose” strategy and drove a shift towards healthier food options to reduce obesity rates. But it was not just her strategic insights that made her a great leader, her humility played an equally big role.  

Among the more unconventional things she did as a leader was writing personal letters to the parents of her senior executives, thanking them for the “gift” of their children to the company. She got the idea when she became a CEO and saw people complimenting her mother on “doing a good job with her daughter”. It made her realize that parents often don’t get acknowledged for the success of their children. The letters, which ran into several hundred a year, honored the parents and cemented a stronger bond between employees and the company. 

What is Humility?

Humility is defined as a “relatively stable trait that is grounded in a self-view that something greater than the self exists.” It’s easy to see Nooyi’s humility in this context. She didn’t pat herself on the back, but deeply appreciated the contributions of her employees and their families, for the company’s success. 

In practice, this view that something greater than self exists, translates to three factors that define the conceptual core of humility:

  • Accurate Self Awareness:  Humble leaders have a realistic view of themselves and are more willing to accept their limitations. As a result, they do not have a strong need to dominate over others. 
  • Appreciation of Others: Humble leaders acknowledge and appreciate other people’s strengths and views. 
  • Openness to Feedback: Humble leaders are more open-minded and willing to learn from others. They can take critical feedback and use that to improve their leadership style.

Role of Humility in Creative Leadership

While humility is a healthy trait in itself, it is key in leadership roles where innovation is important. Research shows that “as individuals get promoted into leadership positions, they gain power and this power has some debilitating effects on the idea-generating process.” In particular, when people gain power they listen less carefully, are less open to others perspectives, and have less ability to handle complexity. 

In other words, when leaders lack humility, they are more likely to brush off someone’s idea quickly without exploring its full potential. Creative ideas emerge from integrating multiple perspectives, which requires a humble mindset (willingness to listen) and a cognitive aspect (to create new internal mental models). Without humility, it is hard to build on each others’ ideas that lead to groundbreaking innovation. 

Strategies to Build More Humility and Creativity

Humility is a prerequisite to being a more creative leader. Without humility it is hard to synthesize new ideas from multiple different perspectives. Here are three strategies that can help you build more humility and lead to more innovation from your team or organization. 

  • Pause before rejecting an idea: Imagine one of your reports comes to you with an idea. As soon as you hear the idea, you spot the flaws in the idea and your first impulse is to quickly dismiss it. Instead of rejecting the idea right away, pause and start digging deeper with a genuine goal to understand the intent behind the idea. Explore ways in which the flaws can be removed while retaining the positive elements. If this exploration leads to something meaningful, make a mental note about it. Over time, you might notice several instances that led to better ideas which will help build more appreciation for others’ ideas. 
  • Let others lead in group meetings: When someone raises a problem in a group meeting, it can be tempting as a leader to quickly jump into providing a solution. Instead, make a norm where you open up the problem and invite solutions from others before sharing your own. Only when you see you have a perspective or an idea that is different from what’s been suggested before, share it with the group. Every time you see “your” idea proposed by someone else or an even better idea from the group, make a mental note about it. This can help build self-awareness of your abilities and limitations. 
  • Steer conversations towards co-creation: Very often, in group meetings, people focus more on picking one idea vs. another. However, the most innovative ideas come from the merging of different concepts and perspectives. As a leader, focus on ideas that have merit and guide your team to synthesizing a more innovative idea by combining multiple good ones. This exercise can help build complex problem solving skills.

What Neuroscience Tells Us About Learning

Students today spend more time on academic learning than generations before. They cover more ground – learning things like programming or environmental science that their parents didn’t have to fret about – and spend more hours doing homework after school. One study found that in the sixteen-year period from 1981 to 1997, there was a 25% decrease in time spent playing outside and a 145% increase in time spent doing homework. 

As our society advances even more, students will have to cover more and more content, not just during their K1-2 school years but throughout their careers. By some estimates, students growing up today will have to learn entirely new domains and reinvent their careers every few years. Learning is no longer limited to younger ages but is becoming a lifelong journey. 

What does this really imply?

Students have to learn to learn –  acquire knowledge and master concepts faster – without which they will find it harder to stay abreast of new developments coming their way. But it’s not just about superficially memorizing things. Students will have to understand how to apply their newfound knowledge to problem-solving. In other words, learning has to become a more efficient process in terms of speed, depth, and understanding.

Thankfully, advances in neuroscience are giving us clues on how to make learning more efficient. Understanding how the brain processes information can help students take charge of their own learning, not just in their student years but throughout their life.

Neuroscience Of How Our Brain Learns

At a high level, we can view learning as a three-step process. When we encounter any new information, our brain first encodes this information and places it in short-term memory. For example, if you come across a new fact, say learning about a new breed of dog, the information first goes into your short-term memory. The next day, you might recall that your childhood friend had a similar-looking dog, and now you start to remember other details about the dog – how friendly it was, how it played, and so on.

At this stage, your memory is in long-term storage; it continuously consolidates other pieces of information that you already had. Over time you might add more connections to this piece of information, maybe a joke you heard about it, and it starts to get more and more enmeshed with other pieces of memory. 

After a few days, you might forget the name of the breed and try to recall it. You struggle a bit and then remember your friend’s dog, the joke, and other bits of memory that were tied to it. And then the name suddenly comes back to you, and you get a sudden burst of relief! 

A few days later, as you share a story about your childhood friend, her dog and the name of the breed come to your mind effortlessly, and you marvel at how well you remember this now. 

The picture above encapsulates how our memory works. Once we consolidate information into our long-term memory, subsequent retrieval and reconsolidation help to strengthen the memory traces and make it easier to recall information in the future. 

Forgetting Is The Path To Learning

Over the last couple of decades, neuroscientists have discovered interesting things about how our memory works, and counterintuitive as it sounds, forgetting information is an important aspect of remembering! Our brain is constantly pruning information that it thinks it doesn’t need so that it can serve the really important bits of information faster. 

Imagine if your brain stored every little nugget of information that it receives – the color of the shirt a passenger wore in the subway, or the name of the street your friend in another state lives on – it would make it much harder to find the useful information that you really need. So if you don’t need any piece of information, its retrieval strength starts to get weaker. However, when you try to recall something that you have forgotten, i.e., when you have to struggle a bit to remember it, that’s when the brain gets a cue that this particular memory is important and might be needed again.

So, with the process of retrieval, it starts to reconsolidate the information – find newer connections to other traces of memory so the memory is stored more strongly. As a result, this process of forgetting and remembering actually helps you learn better. 

Neuroscience-based memory models give us clues on how to structure our learning for maximum effectiveness. Here are three ways to boost your learning.

Repurpose Failure

When students don’t remember or don’t apply concepts correctly, it’s a sign that the information has been stored weakly in the brain. However, instead of feeling that they are ‘not cut out’ for this kind of work, students need to understand that their failure is simply a sign for their brain to reconfigure and become more efficient. Human brains are designed to learn through mistakes, so it makes sense to reframe forgetting as what it really is – a trigger that tells us that we need to take additional steps to ensure learning is complete. Students should use the opportunity to review concepts again and try to reconcile the mistakes so their understanding of the subject increases.  

Adopt Active Learning Strategies & Neuroscience

Adding some challenge to the learning process that taps our brain’s natural mechanisms to process, store and understand information can significantly boost learning. Such challenges are ‘desirable difficulties’ because they make learning more efficient. Here are a few strategies that students and teachers can adopt: 

  • Retrieval Practice: When learning new information, periodically quiz yourself about the central ideas and new terms encountered without looking at the text. This forces your brain to fetch the answers from long-term memory, and repeated retrieval is going to strengthen your memory.
  • Spaced Learning: To add more desirable difficulty to learning, practice retrievals after a period of time. When you start forgetting, you exert more effort in trying to remember, which then cues the brain to store the information more deeply. The gap between learning and retrieving can be anything from a day to a week – the key is that the gap should allow for some forgetting to happen.
  • Interleaving: Instead of waiting to thoroughly master one concept before moving on to the next, try mixing up different kinds of problems or concepts once you feel you have gained sufficient understanding in one. Not only does this make good use of spacing, but it also allows you to spot connections or differences between different kinds of problems. 

Research studies show that such strategies can be very effective in the classroom. In one study, students who practiced math problems in three sessions spaced apart by a week performed twice as well on the final test compared to students who did all the practice problems in one session.  In another study, students performed significantly better on their science exam when a practice quiz one month before the exam interleaved concepts on the quiz. 

Associative Learning & Neuroscience

Another useful strategy in learning is to connect the information you are learning to other pieces of knowledge you already possess. If retrieval practice creates deep roots, then associative learning creates more branches that help anchor the information better. To build associative learning

  • Find an analogy: Ask yourself if the new concept is similar to any other piece of information that you already possess. As an example, you might make a connection between gravity and magnetism as both involve a force that they can’t see and attract objects. 
  • Find a personal connection: In some cases, your personal experience can be helpful in finding connections about what you are learning. For example, while learning about the ice age, you might remember an earlier trip to Grand Coulee, where they saw how the Missoula Floods carved out a massive canyon in a very short time. The scale and impact of the event will give you an enhanced perspective of the topic and deepen your understanding. 

Conclusion

By understanding the neuroscience behind learning, students can take charge of their own learning. The key to efficient learning is to add and embrace the right kind of challenges that push our brains to reconfigure themselves. Unless students lack relevant background or specific skills to make sense of the concept in front of them, such challenges should be welcomed instead of dread. 

With a deeper understanding of the learning process, students can try different approaches and customize them to their needs. As an example, for some students, one day of spacing might be enough, whereas, for others, it might be a week. For the latter set, practicing a skill every day might not be as effective because they haven’t forgotten enough for reconsolidation to take place. With some trial and error, students can identify strategies that work best for them and become smart learners. 

This article first appeared on edCircuit