Creativity Through The Lens of Evolutionary Biology

Understanding how we, as humans, think and behave has always held fascination for scientists. Creativity – the ability to think of novel and useful ideas – is often considered a key trait that has allowed us to flourish as a species. Evolutionary biology dictates that traits beneficial to the species as a whole survive in the long term, while the less useful traits die down. 

So, in what ways is creativity beneficial to us?

Research of innovation in other birds and animals provides clues that creativity evolved when brains developed more, and it provided distinct survival advantages. 

One example found in nature is the bowerbird, one of nature’s creative engineers. Bowerbirds, found natively in Australia and New Guinea, have an interesting courtship and mating ritual. The male bowerbirds build elaborate structures called bowers from sticks and vegetation, and then decorate them with brightly colored objects like shells, stones, flowers or berries. 

When scientists looked at the complexity of the bower, which indicates higher intelligence and creativity, and the brain size they found an interesting correlation. Bowerbird species that built more complex bowers also had a larger cerebellum volume. 

Similar research on birds and primates confirm the hypothesis that more advanced brain structures developed to allow more complex cognition, which conferred evolutionary advantages. In a metastudy of birds and primates, researchers developed an innovation index by coding documented innovative behaviors and found that higher innovation levels correlated with larger brain sizes. 

Two main aspects of cognition that have to work together to support adaptability are innovation and social learning. 

Innovation

The ability to innovate plays a crucial role for a species in its survival. When faced with a new environment, species that are able to discover new food sources, avoid new predators or adapt to a different weather have significant advantages over those that don’t. One example of innovation in adapting to new foods comes from black rats that occupied the Jerusalem pine forests. The only source of food appropriate for the black rats in that area are pine seeds. The rats developed a technique to strip the pine cone to reach the seed, a behavior they had not previously used, which was critical for them to survive in the new habitat.  

Social Learning

While discovering a new food source or developing a new tool to extract hard to reach foods can help an animal survive a new environment, the species as a whole can only benefit when animals can learn from each other. Using the earlier example of black rats, scientists found that black rat pups were able to learn the new pine stripping behavior from their mothers, while other adults were not always successful in learning through observation. This successful transmission of learning from mothers to their pups allowed the black rats to flourish in the new environment. 

Our own history offers numerous examples of successful innovations that were exchanged and adopted by others. Our ability to think creatively and learn from others have allowed us to thrive in new environments. As one of the research studies summarized, “The combination of innovation with social learning, as documented in a number of primate species, is likely to be especially advantageous for species in novel habitats, as it could allow copying exploratory behavior per se as well as permitting the rapid transmission of successful strategies.”

How Imagination Builds Creativity and Social Emotional Skills

Nikola Tesla is one of the most fascinating inventors and futurists in recent history. His numerous accomplishments include the AC induction motor, Tesla coil and radio communication. His method for creating and inventing was not conventional – he relied heavily on imagination and visualized his ideas in great detail before taking any action on them. He describes his thought process as: 

“I do not rush into actual work. When I get an idea I start at once building it up in my imagination. I change the construction, make improvements and operate the device in my mind. It is absolutely immaterial to me whether I run my turbine in thought or test it in my shop. I even note if it is out of balance. There is no difference whatever, the results are the same. In this way I am able to rapidly develop and perfect a conception without touching anything.”

Imagination is the ability to form internal images of objects or situations that are not present to the senses. It is often the first step for a creative endeavor, and often provides the initial insights that lead to a novel solution. Tesla’s ability to visualize and imagine complete devices was extraordinary and allowed him to save immense amounts of time typically spent in prototyping. This approach to imagining problems and possible solutions has been common to many creative endeavors and scientists like Einstein, Feynman and many others have described their own imaginative experiences that led to scientific breakthroughs. 

There are other aspects of imagination that go beyond conceiving a single creative idea to building a more holistic creative mindset for an individual. 

From the earliest ages, children engage in pretend play with each other and with their toys. They imagine themselves in new roles and new situations, which helps them build crucial social and problem solving skills. 

When older students can imagine a future self that is more successful than their current selves, they are more likely to regulate their current behavior and show more persistence. They are more likely to participate in class discussions, spend more time in homework and achieve better grades. 

Imagination’s benefits go beyond personal goals to more broader social contexts. Similar to pretend play, when students are able to imagine others’ perspectives and their feelings, they are more effectively able to build consensus and navigate tricky social situations. 

Despite the advantages of nurturing imagination and creativity, our educational system currently doesn’t prioritize building these skills adequately. As researchers in imagination point out, “…supporting youths’ capacities for social-emotional imagination – their abilities to creatively conjure alternative perspectives, emotional feelings, courses of action, and outcomes for oneself and others in the short- and long-term future – is a critical missing piece in many classrooms.

While imagination is often considered a “soft-skill” and therefore less important than critical thinking, it is really a cognitive skill that schools should encourage in students. Imagination helps not just in creative problem solving, it also helps build important social and emotional skills that are essential for success in the real world. 

The Creative Aspect of Autism Spectrum Conditions

A few years ago, a research study to understand the impact of autism conditions on creativity found an unexpected result. Researchers found that while people on the autism spectrum come up with fewer responses to divergent thinking problems (e.g. different ways to use a paper clip), the responses are more original than the neurotypical population. 

The most common advice given for productive brainstorming —  to come up with lots of ideas which increases the chance of coming up with original ideas — doesn’t seem very relevant for this group. It appears that some of the characteristics of the autism conditions confer an advantage when it comes to creative thinking. As the researchers found, “…when fluency was statistically controlled for, people with high levels of autistic traits were more likely to produce unusual novel responses. This would be a potential cognitive advantage for creative problem solving.”

So why does this happen? 

One possible explanation lies in how we store and process information. Our brain is an associative engine, where all the concepts we know are stored as nodes interconnected through links. These links can be of different types and strengths. When we think of one idea, the next thought most likely to pop into our head is the idea that has the strongest connection to the first idea. For example, someone allergic to strawberries might have a strong ‘cause-effect’ link between “strawberry” and “rash”. Everytime they hear the word “strawberry” they might immediately think of a rash.

For most people, thinking of a concept leads to hopping from one node to the next strongest connected node in one train of thought. This phenomenon, also called falling into an ‘associative-rut’, is what leads to the initial set of fast, not-so-original ideas during brainstorming.

However, for those with autism spectrum conditions (ASC) it is possible that there isn’t one strong associative path to go down, and instead other paths are equally visible. In proposing the hyper-systemizing theory of autism, researchers noted that what appears as slow processing to an outsider might be due to the massive amounts of information being processed. An interviewee with Asperger’s syndrome explained his thinking as: 

“I see all information in terms of links. All information has a link to something and I pay attention to these links. If I am asked a question in an exam I have great difficulty in completing my answer within the allocated 45 min for that essay, because every fact I include has thousands of links to other facts, and I feel my answer would be incorrect if I didn’t report all of the linked facts. The examiner thinks he or she has set a nice circumscribed question to answer, but for someone with autism or Asperger’s syndrome, no topic is circumscribed. There is ever more detail with ever more interesting links between the details.”

The above description also provides a clue on why people with ASC come up with fewer but more original ideas. They ‘see’ more information which increases processing speed, but at the same time this ability makes it easier to avoid going down the routine path. 

In a similar vein, a study on verbal creativity found that people ASC generate more creative metaphors compared to neurotypical populations (e.g. “Feeling worthless is like offering a salad to South Americans”), while comprehension of conventional metaphors was similar between the two groups. The authors conclude, “Our results suggest that adults with ASD can create unique verbal associations that are not restricted to previous knowledge, thus pointing to unique verbal creativity in ASD.” 

ASC needs to be viewed more as a cognitive style, as opposed to a deficit. These differences in how information is processed has demonstrated several advantages, including superior ability in certain aspects of creative thinking. 

Inventor Spotlight: Nivedha Naren

Our featured student inventor is Nivedha Naren, who designed an interesting school supply. Her idea won a national level award as part of the “Student Ideas for a Better America” competition organized by the National Museum of Education

Here is Nivedha talking about her idea in more detail.  

Can you tell us a little bit about yourself? 

My name is Nivedha Naren. I am a 4th grader at Albert Einstein elementary Quest program. I love reading fiction and it takes me into a dream world. I love art, math and science – especially when they can go together.

What is your invention and how does it work?

My invention is called a “Penyon”. It is a combination of a mechanical pencil and crayon especially made for artists. This contraption has the standard mechanical pencil on one side and slots on the other side where you can put crayons. You can get your choice of colored crayon at the press of a button. When not used, it helps store all your crayons safely in one place.

What inspired you to develop this invention?

In my after school, we had a large bin full of crayons that kids used on a daily basis. Most of the time, crayons were either broken or lost.  Also I found it hard to select the color I wanted from this large bin full of crayons. When I am doing my art, I always alternate between pencil and crayons. On many occasions, I have spent time searching for my pencil at different places.

Did your prototype work? How was that experience? 

I made a model of my contraption using construction paper. I made a cylindrical object from the construction paper along with a cone tip for the mechanical pencil. I then used different colored construction papers to resemble the crayons. I glued them on to the back of the pencil to create a ‘ model’ of my contraption. It was not a working prototype but a model. I ideated the working of the button based on the simple idea used in ballpoint pens – i.e. a button with a spring action to push the crayon. I initially thought of having one button per slot to select the crayon but then drew inspiration from a multi-colored pen to have only one color selected.

What are some things you learned from your MindAntix camp that will help you in the future? 

I loved MindAntix camp because it helped in bringing out my creative side. We were encouraged to think out of the box and share ideas. We always make our own things such as a full fledged puppet show where we designed the puppets from scratch. 

Who is your favorite inventor and why? 

I am inspired by many scientists and social workers. But recently i read about Ann Makosinski who became an inventor at the age of 15.  She invented a flashlight powered by body heat. I felt it was a great invention because it solved a very practical problem.

What kind of problems do you want to solve in the future?

I am very passionate about the earth and our environment. I am awed by the great colors around us. I want to solve problems that are destroying nature. I want to preserve the nature around us and its colors for our future generations to enjoy.

How will you use your prize money? 

Gosh.  I haven’t made any plans yet.  But I want to save 70% of the money for my future education and I will make some plans with the rest of the money. Perhaps, I will buy a pet tortoise!

Congratulations Nivedha for winning the award! We hope you get to play with your pet tortoise soon.

Building the 4Cs During Remote Learning

The rising infection rates in the current pandemic is forcing many school districts across the nation to start with a remote learning model in Fall. For teachers who had primarily taught in person earlier, structuring their learning to fit the new model can seem like an intimidating task. 

Beyond the challenges of understanding how to use technology tools effectively for instruction, there is an additional risk. 21st century skills like creativity, critical thinking or collaboration, might not get enough attention which will impact students’ overall development. These skills aren’t built in isolation. Instead, students develop these skills while interacting with their peers and teachers. 

So, how do we ensure that students continue to build these crucial skills when learning occurs in a remote fashion?

Community of Inquiry

Effective remote learning requires the development of healthy communities as outlined in the community of inquiry framework. Three essential elements – teaching presence, social presence and cognitive presence – interact dynamically in the learning process.

Cognitive presence is the extent to which learners are able to construct meaning through reflection or dialog. Social presence is the ability of participants to bring their unique personalities to the community so others view them as “real people.” Social presence directly impacts social emotional learning (SEL) and indirectly supports cognitive presence when learners discuss ideas with each other. Teacher presence has two important roles – to design the content and activities for learners, and to facilitate the social and cognitive presence to achieve learning goals. 

The framework also applies to 21st century skills and the figure below shows how the 4Cs map to the framework. 

Communication and Collaboration

The first step in designing an effective remote learning experience is to set the right climate by focusing on healthy communication and collaboration. A good climate powers the social and cognitive presence and improves learning outcomes. Here are some tips to improve communication and collaboration among students: 

  • In a remote setting, students don’t get an opportunity to get to know their peers in an organic fashion. This is especially true for students new to the class or school. Consider incorporating opportunities where students share about themselves – their hobbies, likes/dislikes etc. You can also create time for students to simply chat with each other for a few minutes at the beginning or end of your remote session. 
  • Have students come up with rules of engagement for group discussions. These rules can include ensuring everyone takes turns, assigning roles, and critiquing ideas respectfully. Assigning one person to monitor the discussion and explicitly call on people who haven’t had a chance to speak is another way to ensure all voices are included. 
  • Collaboration can also be enhanced by using technology effectively. We found high engagement when students were collaboratively editing a document while being able to talk to each other through video conferencing. Students who were shy in group conversations were able to offer more ideas by simply editing the document, and more ideas got incorporated as a result. 

Creative and Critical Thinking

Creativity and critical thinking can be weaved into both discourse and content. Here are some tips to incorporate these skills into learning:

  • Open-ended projects, that are both minds-on and hands-on, provide an opportunity for students to build creative and critical thinking. A well designed project includes opportunities for students to explore ideas, exercise different cognitive thinking patterns like associative or analogical thinking, self-evaluate ideas and solutions, and iterate if necessary. Projects that use simple materials can easily be implemented in a remote setting. 
  • When students reflect on the topic before having group discussions, the outcome is better. For brainstorming ideas, the quality and originality of ideas is higher when students first think of ideas on their own before bringing them to the group. The creativity of ideas is further enhanced when students try to build on each other’s ideas (using improv’s “Yes, and” approach). Similarly, when students first research a discussion topic on their own, they are able to bring more facts into the group discussion and improve critical thinking outcomes. 

In-person instruction is effective as the core element of social presence occurs naturally. However, intentionally incorporating social aspects that build a healthy community and promote meaningful dialog can make remote learning equally powerful. 


The original and longer version of this article was first published on edCircuit