Summer Camp: Designing Board Games

We just wrapped up our multi-disciplinary summer camps this year, and once again had so much fun guiding our middle schoolers in their creative journey! Our challenge for students this year was to design original board games based on their own areas of interests. We partnered with Archimedes school, who taught 3D printing, so students could make meeples and dice for their games.

By asking students to design a game around their passion or interests, our goal was that they would bring their domain knowledge on the topic, without which they wouldn’t be able to make a sufficiently creative game. In addition, we expected them to be more engaged during learning and more incentivized to put in extra effort to create the best version of their idea. 

Game Design Concepts

To design a good game, students had to first learn some basic game concepts like game mechanics, victory conditions and tension. To make learning more relevant,  we brought in common (and a couple not-so-common) board games that students used in deconstructing the various elements. We also used other games like Rock-Paper-Scissors to demonstrate the concept of balance in a game (and it also gave us a chance to sneak in some math and logic). They figured out that a Rock-Paper-Scissors version with an even number of elements can never be balanced, and then had a blast designing their own balanced versions with more than three elements!

Creative Process

While planning for the camp we also designed how the creative process would flow. If you ask a student (or most adults for that matter) to come up with an original idea, it often stumps them. Integrating a creative process into the workflow can give students the tools and direction to think creatively, and makes the process far less intimidating. 

The two techniques we focused on for the camp were analogical and associative thinking, which we felt were best suited for this scenario. 

To start with students first picked a game they liked and created an analogous version based on their interest. As a simple example, suppose the theme is to teach children about nutrition and health, and the model game is Snakes and Ladders. After deconstructing the game into its elements, one could design a new board game where some spots, like eating junk food or catching a cold makes you lose spots while exercising might make you go forward more spots. 

At this point the game still looks a lot like Snakes and Ladders. You could then start associating  with other game elements and modifying the game. For instance, you could add chance cards (e.g. falling and breaking a bone that sends you back a few spots) or convert the game to a point based system. By using different game elements, the game now starts to evolve differently and takes a very different shape. 

Student Designed Games

It was fascinating to see the students come up with very interesting, and very different, ideas for their board games. Here is a sampling of the board games students designed:

  • Rainforest Exploration – A game that teaches you about different animals in the rainforest as you race to the finish. 
  • Sun Power: A game that incentivizes using renewable energy sources. 
  • Collect-It: An interior design game, where you race to decorate your room. 
  • Archi-tex: A game where you have to be the first one to build a 2,000 ft building. 
  • Prime Switch: A fast paced math game that tests your computationals skills.
  • Soccer Board Game: Score goals by answering soccer trivia questions. 

The most fun part, though, was to see the excitement and energy as students got ready for the final demo to parents. Almost every student found last minute mistakes or changes that they just had to fix, but eventually all of them were able to put their demo together! And of course, they all found several ways that they could have designed things differently. 

We hope they enjoyed playing their game with friends and family, and maybe even designed their next versions!


Inventor Spotlight: Max Baryshnikov

Our featured student inventor this time is Max Baryshnikov, whose invention idea is to make a drone that helps in emergency services. His invention won a national level award as part of the “Student Ideas for a Better America” competition organized by the National Museum of Education. He conceived the idea for the drone as part of our summer camp, held in collaboration with the Archimedes School.

Here is Max talking about his idea in more detail.  

Can you tell us a little bit about yourself?

My name is Max Baryshnikov, I am currently 11 years old. I am in sixth grade of the International Community school.

What is your invention and how does it work?

My invention was a drone-like device. It would help emergency services when they need to explore and secure hazardous locations, mainly fires. It is based of a drone on wheels, but I thought of how I can modify it to make it helpful in fires. This drone would have bright lights, a small speaker, and a mechanism like a grappling hook. If the fire departments need to scout out a fire, they would send in this drone. It would drive around, finding a secure path to get into the fire. If it finds trapped survivors, it would turn on its lights to show the way; the speaker can be used to communicate with the survivors and lead them to safety. But if the drone can’t get to an area, it uses its grappling hook to hook into a higher location, and then it will utilize its bright lights, to mark paths.

How did you come up with the idea?

I came up with the idea when I thought: “There are so many problems in the world now, what can I do to help?” With a lot of fires going on during the summer when I attended this camp, fire drone seemed like a very useful device.

Did your prototype work? How was that experience?

My prototype didn’t work because I didn’t know how to fit this all into one drone, I also didn’t even have a way to test it in situations. The experience was a bit disappointing, when my prototype didn’t do well, but that means I hit a wall and if I hit a wall, that means I progressed, which made me happy.

What did you learn from the summer camp?

In my summer camp I learn about other wonderful inventors, their inventions, and how they worked. I also learned that if were to make something – we should organize it and evolve it.

What was your favorite memory from the camp?

My favorite memory from camp was probably learning about all the inventors. It was amazing to learn what they did to create their inventions that made them famous, and how they advanced their lives in such a long time ago.

What kind of problems do you want to solve when you grow up?

I don’t know what problems will come up in the future. At this age there is only so much I can do. But when I grow up, I can see what new problems develop in that time, because I can be more effective then, then I can now.

What will you be using your prize money for?

I don’t really want to spend my prize money immediately, because I don’t have anything in mind to use it for. I’m going to instead save it, so when I need it, I’ll always have it waiting.   

Congratulations Max for winning the award! We wish you the best as you solve future world problems.

The Neuroscience Of Creativity

A few hours after Einstein died, Thomas Harvey, the pathologist who performed his autopsy, removed Einstein’s brain without his family’s permission and against Einstein’s wishes of what he wanted done with his remains. He then carved out his brain into 240 pieces and preserved them. After hiding them for several years, he finally sent parts of the brain to other scientists to conduct studies and unravel the mystery behind Einstein’s intellectual prowess.

One of the studies found that Einstein’s brain, compared to 11 other control brains, had a higher ratio of glial cells to neurons in a part of the association cortex, which is responsible for integrating and synthesizing information from multiple parts of the brain. This possibly resulted from Einstein spending so much time visualizing and solving complex scientific problems in creative ways. Not everyone agreed with the study’s conclusions though, and there have been valid criticisms of the way this and other similar studies were conducted.

Since the time of these (potentially flawed) studies, we have come a long way in understanding about the brain structures that aid in creative and critical thinking.

In a recent study, researchers found that the ability to think creatively depends on the interconnectedness between different parts of the brain involved in creative problem solving. The three large-scale networks that span both hemispheres and aid in creative thinking are:

  • Default network: This network consists of the cortical midline and posterior inferior parietal regions of the brain structures. The default network is active when you are not in deliberate thought and helps in idea generation.
  • Executive network: The executive network, which is composed of the anterior and lateral regions of the prefrontal cortex and other interconnected regions like the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC). The executive network is active when you are consciously thinking, and is responsible for planning, reasoning and decision making.
  • Salience network: The salience network, comprised of bilateral insula and anterior cingulate cortex facilitates the transition between the default and executive networks.

The study, which used connectome based predictive modeling, found some interesting results.

First, people who were more creative showed dense functional connectivity between the parts of the brain that comprised the default, executive and salience networks. Of the highest connected nodes in the high creative network, almost a half were in the default network followed by those in the salience and executive networks. In comparison, the low creative network showed diffused connectivity mainly in the subcortical/brainstem regions. Second, creative people were able to engage simultaneously parts of the brain that are typically supposed to work in isolation. For example, the default and executive networks, which correspond to the ideation and evaluation phases respectively, are normally assumed to be active at separate times. Creative people, however, are able to engage these networks at the same time.

If you are one of the people who believe they weren’t born with the creative gene (or the creative brain), there is reason for some hope.

Studies have also found that training for creativity can be effective. In a study where participants were trained on divergent thinking, researchers found that due to neural plasticity, structural changes were found in some parts of the brain post training that caused improvement in the participants’ creativity.  Similar effects have been found in other studies that looked at music and visual art training, where researchers found plasticity in neural pathways that enhance creative cognition.

All of this clearly indicates that, from a cognitive development perspective, it’s vital to have creativity and arts integrated into school curriculum. As the researchers in the creativity training study summarized, “Obviously, it is promising that human creativity capacities can be developed through well-designed training programs, which may contribute to social development and human civilization.

Inventor Spotlight: Krithi Iyer

Our featured student inventor this time is Krithi Iyer, who came up with an idea to make a temperature sensing shoe. Her invention won a national level award as part of the “Student Ideas for a Better America” competition organized by the National Museum of Education. She designed the shoe as part of our summer camp, held in collaboration with the Archimedes School.

Here is Krithi talking about her idea in more detail.  

Can you tell us a little bit about yourself?

I’m Krithi Iyer from Redmond Middle School. I am currently in 7th grade and enjoy coming up with new ideas. Usually my ideas take the form of artwork, however I often come up with various inventive ideas.  

What is your invention and how does it work?

My invention was a ‘Thermochromic Shoe’, a shoe that could change its internal temperature. A problem I usually encountered was super cold, or super sweaty feet. This shoe can either cool or heat your foot. As the temperature changes, the color of the thermochromic paint also changes, a color sensor inside of the shoe will then sense the color and either heat up the shoe or cool it down based on the color of the paint. The shoe can also grow or shrink, to fit your foot size and to allow more air circulation inside.

Did your prototype work? How was that experience?

My prototype worked partially. I wasn’t able to make the color sensor or the heating and cooling system, but I was able to show how thermochromic paint reacted to the temperature outside. I hope that one day I will be able to build this shoe. I enjoyed the experience especially since I enjoyed painting with the thermochromic paint.

What did you learn from the summer camp?

Probably the most significant thing I learned from this camp was what thermochromic paint was. I was previously unaware such a thing existed, but I found it to be a tool that could be used to solve many problems—smaller or larger than a sweaty foot. I also learned the stages of becoming an inventor and how they come up with and execute their ideas.

Who is your favorite inventor and why?

My favorite inventor is Leonardo Da Vinci. He not only created several inventions such as the prototype for a plane, but he was also an artist. His inventions have greatly shaped our world today and I give my thanks to him.

What kind of problems do you want to solve when you grow up?

When I grow up, or maybe even now, I want to find cures to diseases. Medicine has usually always intrigued me and learning about new diseases enthralls me, or sometimes scares me.  

What will you be using your prize money for?

My prize money will be used for 3 things. First, I am going to donate 20% of it to charity. 10% I am going to save, and the remaining 70% will be used for a business fair I plan to participate in.  I will use the money to buy the materials I need to make my merchandise.

Congratulations Krithi for winning the award! We wish you the best in your upcoming business fair, and other creative endeavors in the future.

Inventor Spotlight: Aaron Liu

Our featured student inventor this time is Aaron Liu, who came up with an idea to make a temperature sensing food bowl. His invention won a national level award as part of the “Student Ideas for a Better America” competition organized by the National Museum of Education. He designed the bowl as part of our summer camp, held in collaboration with the Archimedes School.

Here is Aaron talking about his idea in more detail.  

Can you tell us a little bit about yourself?

My name is Aaron and I was born in Washington in 2008. I am in fifth grade and go to Ben Franklin Elementary school. In my free time I enjoy playing baseball.

What is your invention and how does it work?

My invention is the thermochromic bowl and it works when a hot substance is placed with in the bowl. The bowl will then change colors.

How did you come up with the idea?

I came up with the idea when I realized that I hurt my tongue a lot while eating hot foods and a bowl that changes colors when something hot was in it was a good idea.

Did your prototype work? How was that experience?

The prototype did not work at first because the plastic was too thick. So I put paint on the brims instead of the whole bowl and it worked. The experience was good.

What did you learn from the summer camp?

I learned a lot but some things I learned are how to use a website to make 3d images, and how thermochromic paint works.

What is your most fun memory from the camp?

My favorite memory was when I won jeopardy on the last day of camp.

Who is your favorite inventor and why?

My favorite inventor is Thomas Edison. He is my favorite inventor because he invented the light bulb and pioneered the way for the different forms of electronic light we have now.

What kind of problems do you want to solve when you grow up?

When I grow up I want to solve global warming.

What will you be using your prize money for?

I want to save the prize money to buy a arcade game.

Congratulations Aaron for winning the award! Solving global warming is a great goal and we wish you the best as you apply your creativity to solve future problems.