MindAntix Brainteaser: Make-it-Better

The Wright brothers, Orville and Wilbur, after experimenting with gliders for a couple years, built and tested their first powered plane in 1903. The flight lasted 59 seconds. The next year, after making some design improvements, the brothers managed to stay in air for more than 5 minutes. And finally in 1905, they broke all records by flying 24.5 miles in a little over 38 minutes and landing safely when the fuel ran out.

Interestingly, despite having witnesses and photographic evidence, people were skeptical that two bicycle repairmen, with no expertise in designing airplanes, would have beaten well-funded experts in the field who were actively building their own planes. In fact, a 1906 article on the Wright Brothers in the Paris edition of the Herald Tribune was captioned “FLYERS OR LIARS?”. It took another couple of years for people to finally accept that the Wright brothers had indeed managed to create a flying machine. So how did these two amateurs end up outthinking the experts?

To fully understand that, you have to look at what some educators believe our current education system lacks. Dr. Maureen Carroll, Director of Stanford University’s Research in Education & Design Laboratory, is an advocate for introducing Design Thinking into the K-12 classroom. Our educational focus, thus far, has been on building analytical thinking skills. But, as she explains, “While analytical thinking is critically important, design thinking blends in equally powerful creative thinking.” And, “It’s not that creative thinking is more important… a blend of both types of thinking are more productive for finding truly unique and transformative innovation.

So, what does the design thinking process look like? As Dr. Carroll and her colleagues describe, the design thinking process has six key components – Understand, Observe, Point of View, Ideate, Prototype and Test. This is an iterative process, and not a linear one. Making prototypes and testing helps in understanding what works and what doesn’t, and in modifying the point of view.

How does this all relate to the Wright Brothers? Essentially, what made the Wright brothers succeed, was their exceptional design thinking skills. In an analysis of the Wright brothers’ thinking, Johnson Laird proposes that the brothers superior reasoning skills gave them the edge over others. Wilbur first spent three months reading up about aeronautical history and recognizing some of the gaps in the knowledge (understanding). They also developed their own, unique point of view on what factors would be most important in designing airplanes. For instance, while Wrights’ contemporaries believed building a light but powerful motors was key, the brothers believed that the ability to control the the plane was more important. They also used analogies from bicycles and nature to design specific parts of the plane (ideation, creativity). And of course, they spent years observing, iterating and building prototypes to test out their ideas.

Encouraging design thinking is the goal behind the Make-It-Better category of MindAntix Brainteasers. The goal is to look at everyday objects – understand how they evolved the way they did, observe how people use them, develop a point of view about what could be improved about them and then come up with ideas on how to make them even better. Design thinking, like other creative problems, helps build both critical and creative thinking. And because of the focus on users, it also helps build empathy. As Carroll and colleagues explain, “Empathy develops through a process of ‘needfinding’ in which one focuses on discovering peoples’ explicit and implicit needs.

After my son had done a couple of these brainteasers, he identified his own problem –  he wanted to make stickers better. His problem was that stickers lose their stickiness quickly when you try to use them on different shirts (well, it was a problem for him). His solution was to attach the sticker to one magnet and use another magnet to hold it in place. Not bad for a six year old!

Developing basic design skills isn’t hard, even without having to prototype and test. There are hundreds of objects we interact with everyday that are waiting to be improved upon. All it needs is an inclination to pause, reflect and imagine.

 

MindAntix Brainteaser: Twist-a-Story

In a study in the late 80s, researchers gave a group of 4-6 year olds the following information:

  • “All fishes live in trees.”
  • “Tot is a fish.”

They then posed a question to the children: “Does Tot live in the water?” This syllogism was presented in two different ways – as matter of fact or with a make-believe prompt like “let’s pretend I’m on another planet”. What the researchers found, turned a long held assumption upside down. More students in the make-believe prompt group answered correctly with a “No” compared to the matter of fact group, upending the belief that imaginative thinking constricts deductive reasoning.

Scientists have wondered if our ability to tell stories, or narrative intelligence, evolved to cope with the increasingly complex social dynamics.  Prof. Kerstin Dautenhahn, who proposed the Narrative Intelligence Hypothesis, explains, “narratives play a crucial role in how young human primates become socially skilled individuals” But like the study above suggests, narratives don’t just help with social learning – they also build logical thinking. Prof. Sarah Worth believes, “we learn to reason through the reasoning provided to us through hearing and telling stories. By engaging with narratives, we practice using our narrative reason.

But what defines a narrative? A narrative is a story with the typical structure of exposition, rising action, climax, falling action and denouement, and focuses on unusual rather than stereotypical events. Or in other words, “narratives are about ‘unusual events’, ‘things worth telling’.” This focus on the unusual is one reason creativity and storytelling are so intricately linked. But more than being intertwined, storytelling can provide a great medium for practicing creative and critical thinking.

The Twist-a-Story brainteaser is a playground to build on creativity and narrative reasoning. These brainteasers use a familiar story but add an unexpected twist which users have to use to complete the story. A story, just like other creative problems, can be dissected into its various elements – plots, characters, events etc. which can be manipulated in different ways to make new creative stories.

These brainteasers help build the different kinds of creativity that Margaret Boden, author of  “The Creative Mind”, describes – exploratory (exploring a given space of concepts), combinatorial (combining existing concepts into new concepts) and transformative (changing the rules that delimit conceptual space). Examples of combinatorial creativity, posted by users, include the third Little Pig using Karate to fend off the fox when he couldn’t finish his brick house, or Snow White using incinerating liquid to defeat the evil queen (combining new elements, like karate and incinerating liquid, into the solution).

Stories are a great way to nurture creative thinking and reasoning skills, even when you don’t start from a blank page. You can always use existing stories to grow your creative and narrative thinking. The next time you read a story, try to change something and see how a new narrative emerges. As Ralph Waldo Emerson once quipped, “There is creative reading as well as creative writing.

 

 

An often overlooked but important aspect of Creativity

One of the earliest people to recognize that posing questions and finding problems can be an invaluable tool in learning was Socrates. Almost 2,500 years ago, Socrates developed an approach of asking questions (elenchi) to reach a state of contradiction (aporia) to help discover new insights for the concept under study. Even though he was eventually found guilty of “corrupting the minds of the youth” and sentenced to death by drinking poison hemlock, his ideas survived and influenced the present-day scientific method.

Jacob Getzels and Mihaly Csikszentmihalyi, leading figures in the field of creativity, have explored the role of problem discovery in creativity. In a landmark experiment, they brought in art students who were given the task of drawing still life from a selection of objects. They found that students displayed one of two behaviors – problem-solving students spent less time choosing and manipulating an object they painted, while problem-finding students spent considerably longer examining and manipulating their objects. What they learned next was quite interesting.

The problem-finding artists generated paintings that were judged to be more original by a panel of independent experts. What was even more fascinating was how these artists fared in the long run. Getzels and Csikszentmihalyi measured the success of these students seven years after the experiment and again after another eleven years. They found that problem-finding students were the most successful in their careers as artists compared to problem-solving students, many of whom had abandoned art altogether!

Problem posing isn’t just relevant in the art domain – it extends to even mathematics, a field conventionally not considered creative. In a study conducted on creativity and mathematical problem posing, researchers asked high school students in US and China to come up with as many mathematical problems in different tasks. An example task was a figure of a triangle with an inscribed circle where the participants had to make up problems related to the figure. Researchers then evaluated the responses on the fluency, flexibility and originality – key dimensions of creativity. They found that the more mathematically advanced students were also more creative in posing problems compared to their peers. Professors Singer, Ellerton and Cai, who study mathematical education in the different parts of the world, summarized as follows: “Problem posing improves students’ problem-solving skills, attitudes, and confidence in mathematics, and contributes to a broader understanding of mathematical concepts and the development of mathematical thinking”.

Creativity flourishes when problem finding meets problem solving. Professor Edward Silver, who conducts research related to teaching and learning of mathematics, observes, “The connection to creativity lies not so much in problem posing itself, but rather in the interplay between problem posing and problem solving. It is this interplay of formulating, attempting to solve, reformulating, and eventually solving a problem that one sees creative activity”.

Problem finding is at the core of MindAntix – users not only solve creative problems but are encouraged to find new problems that they have observed or discovered in the process. Problem finding, while often overlooked, is a meta-skill applicable to many different domains and is an indicator of both creativity and excellence.

 

MindAntix Brainteaser: Wacky Inventions

What’s the best way to spread butter on toast? It turns out that people have pondered this problem at length and have come up with many solutions, including a recently funded Kickstarter project for a ButterUp Knife . But did you know about this little known “invention”, Butterstick – butter that comes in a stick just like a glue stick or a lipstick? You simply twist the bottom and start applying the butter – simple, easy and no dirty knives!

The inventor of Butter Stick and hundreds of other such creative inventions is Kenji Kawakami, the progenitor of Chindogu, the Japanese art of “unuseless” inventions. The word Chindogu, translates to “strange tools” or tools that seemingly solve a problem, but as Kawakami explains, “chindogu have greater disadvantages than precursor products, so people can’t sell them. They’re invention dropouts.“ Nevertheless, Kawakami finds making Chindogu “an intellectual game to stimulate anarchic minds” and pursues this art with an almost spiritual devotion.

The art of Chindogu has spread all over the world since Kawakami created it in the late 1980s. Tina Seelig, professor at Stanford University and author of InGenius: A Crash Course in Creativity, considers Chindogu to be an indispensable tool to spur innovative thinking (the Imagination component in her Innovation Engine model) and routinely uses it in her courses. Chindogu, as Dr. Seelig describes, is about  “putting things together in surprising ways – they are not useful, they are not useless but when you put them together interesting things happen.”

Chindogu is the inspiration behind the MindAntix brainteasers, “Wacky Inventions”. But there is a twist – instead of identifying a problem and then building a gadget to solve the problem, you have to combine the two random objects in the brainteaser in a meaningful way to solve some problem.

At a recent Creative Thinking session, I gave a group of 4th and 5th graders an additional task – not only did they have to make an invention using two random objects, they also had to make an infomercial to sell their neat gadget to their classmates! It didn’t take long for the creative juices to start flowing. We soon had impressive ideas from different teams like Jumbrella Skiing using an umbrella and a jump rope (because water skiing while standing is hard, so why not sit down and relax while you are being pulled?), and a Hold-a-Loon using a balloon and a paper clip (you never have to worry about carrying heavy books again). Not only did all teams accomplish their goal of creating something novel, they were all amazed at having created something useful out of completely random elements.

Connecting and combining ideas from different domains is the essence of creativity. Fun exercises like Wacky Inventions and Chindogu are a great way to build associative thinking skills. Nurturing such little-c and mini-c creative adventures is an essential element in paving the way for groundbreaking innovations later.

MindAntix Brainteaser: Opposite Day

One of the oldest known examples of cryptography was found on a Babylonian cuneiform tablet that contained a secret formula for pottery glaze. The inventor of the secret recipe jumbled up the figures defining the ingredients to prevent people from stealing the recipe. More than a thousand years later, Julius Caesar started using the shift cipher to encrypt his private messages. For the next two thousand years, people used increasingly more sophisticated systems for encrypting messages. Yet, all of them were based on one fundamental premise – that in order to encrypt and decrypt a message both parties must have the same key.

In the early seventies, Whitfield Diffie and Martin Hellman, along with Ralph Merkle, reversed this basic assumption and completely changed the cryptography landscape. Their invention of public key cryptography enabled Internet commerce to take off dramatically by allowing people to encrypt credit card transactions without having to first establish a common key between the seller and the buyer. As Frans Johansson describes in his book, The Medici Effect, “By reversing this assumption, Diffie and Hellman found the intersection between the field of cryptology and a particular, curious brand of mathematics involving so-called one-way functions.

Reversing assumptions is a powerful way to break free from preconceived notions. Michael Michalko, who outlined his assumption reversal technique called “False Faces” in Thinkertoys, explains, “Reversals destabilize your conventional thinking patterns and frees information to come together in provocative new ways.” Reversing well-established assumptions is the inspiration behind the “Opposite Day” category of brainteasers on MindAntix. The goal here is to reverse a commonly held assumption and then find ways in which the reversal is meaningful. Let’s take an example.

Suppose, you were to reverse the assumption that “Doors have handles”. If you imagine a door that doesn’t have the typical handle, you might think of a door that is perhaps operated by a foot pedal. In what situation might you need this kind of a door? Perhaps, when it’s inconvenient to use your hands, like when your hands are full from carrying grocery bags. That might trigger the idea of making a garage door that uses a foot latch to open the door allowing you to bring in your shopping bags more conveniently.

Of course, there are many different ideas you can come up with that reverse the assumption in the above example. The point of this exercise is to allow you to gain fresh insights by breaking free from conventional patterns of thinking. It would be much harder to come up with novel ideas if you simply asked yourself to make a better door. But by asking a more specific (and powerful) question, it’s easier to trigger a more novel response.

The next time you are stumped with a challenging problem, try to examine your assumptions and reverse them. You might be surprised by what you discover. As Isaac Asimov, the famous science fiction author said, “Your assumptions are your windows on the world. Scrub them off every once in a while, or the light won’t come in.